版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川成都實(shí)驗(yàn)中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,已知角A,B,C所對(duì)的邊為a,b,c,,,,則()A. B.C. D.12.與直線關(guān)于軸對(duì)稱的直線的方程為()A. B.C. D.3.用斜二測(cè)畫(huà)法畫(huà)出邊長(zhǎng)為2的正方形的直觀圖,則直觀圖的面積為()A. B.C.4 D.4.如圖,已知正方體,點(diǎn)P是棱中點(diǎn),設(shè)直線為a,直線為b.對(duì)于下列兩個(gè)命題:①過(guò)點(diǎn)P有且只有一條直線l與a、b都相交;②過(guò)點(diǎn)P有且只有兩條直線l與a、b都成角.以下判斷正確的是()A.①為真命題,②為真命題 B.①為真命題,②為假命題C.①為假命題,②為真命題 D.①為假命題,②為假命題5.下列命題中,一定正確的是()A.若且,則a>0,b<0B.若a>b,b≠0,則>1C.若a>b且a+c>b+d,則c>dD.若a>b且ac>bd,則c>d6.某地政府為落實(shí)疫情防控常態(tài)化,不定時(shí)從當(dāng)?shù)?80名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測(cè).把這批公務(wù)員按001到780進(jìn)行編號(hào),若054號(hào)被抽中,則下列編號(hào)也被抽中的是()A.076 B.104C.390 D.5227.設(shè)直線與雙曲線(,)的兩條漸近線分別交于,兩點(diǎn),若點(diǎn)滿足,則該雙曲線的離心率是()A. B.C. D.8.某考點(diǎn)配備的信號(hào)檢測(cè)設(shè)備的監(jiān)測(cè)范圍是半徑為100米的圓形區(qū)域,一名工作人員持手機(jī)以每分鐘50米的速度從設(shè)備正東方向米的處出發(fā),沿處西北方向走向位于設(shè)備正北方向的處,則這名工作人員被持續(xù)監(jiān)測(cè)的時(shí)長(zhǎng)為()A.1分鐘 B.分鐘C.2分鐘 D.分鐘9.已知雙曲線的方程為,則下列關(guān)于雙曲線說(shuō)法正確的是()A.虛軸長(zhǎng)為4 B.焦距為C.焦點(diǎn)到漸近線的距離為4 D.漸近線方程為10.若命題為“,”,則為()A., B.,C., D.,11.已知定義在R上的函數(shù)滿足,且有,則的解集為()A. B.C. D.12.已知,,若,則xy的最小值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的準(zhǔn)線方程為,則________14.橢圓的兩焦點(diǎn)為,,P為C上的一點(diǎn)(P與,不共線),則的周長(zhǎng)為_(kāi)_____.15.某商場(chǎng)對(duì)華為手機(jī)近28天的日銷(xiāo)售情況進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù),t36811ym357利用最小二乘法得到日銷(xiāo)售量y(百部)與時(shí)間t(天)的線性回歸方程為,則表格中的數(shù)據(jù)___________.16.在空間直角坐標(biāo)系中,點(diǎn)到x軸的距離為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)的極值;(2)若對(duì)恒成立,求實(shí)數(shù)a的取值范圍.18.(12分)已知拋物線的焦點(diǎn)F到準(zhǔn)線的距離為2(1)求C的方程;(2)已知O為坐標(biāo)原點(diǎn),點(diǎn)P在C上,點(diǎn)Q滿足,求直線斜率最大值.19.(12分)在三棱柱中,側(cè)面正方形的中心為點(diǎn)平面,且,點(diǎn)滿足(1)若平面,求的值;(2)求點(diǎn)到平面的距離;(3)若平面與平面所成角的正弦值為,求的值20.(12分)已知函數(shù).(1)當(dāng)時(shí),求的單調(diào)區(qū)間與極值;(2)若在上有解,求實(shí)數(shù)a的取值范圍.21.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),求函數(shù)的值域.22.(10分)已知函數(shù)(1)求函數(shù)在區(qū)間上的最大值和最小值;(2)求出方程的解的個(gè)數(shù)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】利用正弦定理求解.【詳解】在中,由正弦定理得,解得,故選:B.2、D【解析】點(diǎn)關(guān)于x軸對(duì)稱,橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù),據(jù)此即可求解.【詳解】設(shè)(x,y)是與直線關(guān)于軸對(duì)稱的直線上任意一點(diǎn),則(x,-y)在上,故,∴與直線關(guān)于軸對(duì)稱的直線的方程為.故選:D.3、A【解析】畫(huà)出直觀圖,求出底和高,進(jìn)而求出面積.【詳解】如圖,,,,過(guò)點(diǎn)C作CD⊥x軸于點(diǎn)D,則,所以直觀圖是底為2、高為的平行四邊形,所以面積為.故選:A.4、A【解析】①由正方形的性質(zhì),可以延伸正方形,再利用兩條平行線確定一個(gè)平面即可;②一組鄰邊與對(duì)角面夾角相等,在平面內(nèi)繞P轉(zhuǎn)動(dòng),可以得到二條直線與a、b的夾角都等于.【詳解】如下圖所示,在側(cè)面正方形和再延伸一個(gè)正方形和,則平面和在同一個(gè)平面內(nèi),所以過(guò)點(diǎn)P,有且只有一條直線l,即與a、b相交,故①為真命題;取中點(diǎn)N,連PN,由于a、b為異面直線,a、b的夾角等于與b的夾角.由于平面,平面,,所以平面,所以與與b的夾角都為.又因?yàn)槠矫?,所以與與b的夾角都為,而,所以過(guò)點(diǎn)P,在平面內(nèi)存在一條直線,使得與與b的夾角都為,同理可得,過(guò)點(diǎn)P,在平面內(nèi)存在一條直線,使得與與的夾角都為;故②為真命題.故選:A5、A【解析】結(jié)合不等式的性質(zhì)確定正確答案.【詳解】A選項(xiàng),若且,則,所以A選項(xiàng)正確.B選項(xiàng),若,則,所以B選項(xiàng)錯(cuò)誤.C選項(xiàng),如,但,所以C選項(xiàng)錯(cuò)誤.D選項(xiàng),如,但,所以D選項(xiàng)錯(cuò)誤.故選:A6、D【解析】根據(jù)題意,求得組數(shù)與抽中編號(hào)的對(duì)應(yīng)關(guān)系,即可判斷和選擇.【詳解】從780名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測(cè),故需要分為組,每組人,設(shè)第組抽中的編號(hào)為,設(shè),由題可知:,故可得,故可得.當(dāng)時(shí),.故選:.7、C【解析】先求出,的坐標(biāo),再求中點(diǎn)坐標(biāo),利用點(diǎn)滿足,可得,從而求雙曲線的離心率.【詳解】解:由雙曲線方程可知,漸近線為,分別于聯(lián)立,解得:,,所以中點(diǎn)坐標(biāo)為,因?yàn)辄c(diǎn)滿足,所以,所以,即,所以.故選:C.【點(diǎn)睛】本題考查雙曲線的離心率,考查直線與雙曲線的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.8、C【解析】以設(shè)備的位置為坐標(biāo)原點(diǎn),其正東方向?yàn)檩S正方向,正北方向?yàn)檩S正方向建立平面直角坐標(biāo)系,求得直線和圓的方程,利用點(diǎn)到直線的距離公式和圓的弦長(zhǎng)公式,求得的長(zhǎng),進(jìn)而求得持續(xù)監(jiān)測(cè)的時(shí)長(zhǎng).【詳解】以設(shè)備的位置為坐標(biāo)原點(diǎn),其正東方向?yàn)檩S正方向,正北方向?yàn)檩S正方向建立平面直角坐標(biāo)系,如圖所示,則,,可得,圓記從處開(kāi)始被監(jiān)測(cè),到處監(jiān)測(cè)結(jié)束,因?yàn)榈降木嚯x為米,所以米,故監(jiān)測(cè)時(shí)長(zhǎng)為分鐘故選:C.9、D【解析】根據(jù)雙曲線的性質(zhì)逐一判斷即可.【詳解】在雙曲線中,焦點(diǎn)在軸上,,,,所以虛軸長(zhǎng)為6,故A錯(cuò)誤;焦距為,故B錯(cuò)誤;漸近線方程為,故D正確;焦點(diǎn)到漸近線的距離為,故C錯(cuò)誤;故選:D.10、B【解析】特稱命題的否定是全稱命題,把存在改為任意,把結(jié)論否定.【詳解】“,”的否命題為“,”,故選:B11、A【解析】構(gòu)造,應(yīng)用導(dǎo)數(shù)及已知條件判斷的單調(diào)性,而題設(shè)不等式等價(jià)于即可得解.【詳解】設(shè),則,∴R上單調(diào)遞增.又,則.∵等價(jià)于,即,∴,即所求不等式的解集為.故選:A.12、C【解析】對(duì)使用基本不等式,這樣得到關(guān)于的不等式,解出xy的最小值【詳解】因?yàn)?,,由基本不等式得:,所以,解得:,?dāng)且僅當(dāng),即,時(shí),等號(hào)成立故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由準(zhǔn)線方程的表達(dá)式構(gòu)建方程,求得答案.【詳解】因?yàn)闇?zhǔn)線方程為,所以故答案為:4【點(diǎn)睛】本題考查拋物線中準(zhǔn)線的方程表示,屬于基礎(chǔ)題.14、【解析】結(jié)合橢圓的定義求得正確答案.【詳解】橢圓方程為,所以,所以三角形的周長(zhǎng)為.故答案為:15、1【解析】根據(jù)已知條件,求出,的平均值,再結(jié)合線性回歸方程過(guò)樣本中心,即可求解【詳解】解:由表中數(shù)據(jù)可得,,,線性回歸方程為,,解得故答案為:116、【解析】由空間直角坐標(biāo)系中點(diǎn)到軸的距離為計(jì)算可得【詳解】解:空間直角坐標(biāo)系中,點(diǎn)到軸的距離為故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)極大值為,無(wú)極小值(2)【解析】(1)求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的正負(fù)判斷極值點(diǎn),代入原函數(shù)計(jì)算即可;(2)將變形,即對(duì)恒成立,然后構(gòu)造函數(shù),利用求導(dǎo)判定函數(shù)的單調(diào)性,進(jìn)而確定實(shí)數(shù)a的取值范圍..【小問(wèn)1詳解】對(duì)函數(shù)求導(dǎo)可得:,可知當(dāng)時(shí),時(shí),,即可知在上單調(diào)遞增,在上單調(diào)遞減由上可知,的極大值為,無(wú)極小值【小問(wèn)2詳解】由對(duì)恒成立,當(dāng)時(shí),恒成立;當(dāng)時(shí),對(duì)恒成立,可變形為:對(duì)恒成立,令,則;求導(dǎo)可得:由(1)知即恒成立,當(dāng)時(shí),,則在上單調(diào)遞增;又,因,故,,所以在上恒成立,當(dāng)時(shí),令,得,當(dāng)時(shí),在上單調(diào)遞增,當(dāng)時(shí),在上單調(diào)遞減,從而可知的最大值為,即,因此,對(duì)都有恒成立,所以,實(shí)數(shù)a的取值范圍是.18、(1);(2)最大值為.【解析】(1)由拋物線焦點(diǎn)與準(zhǔn)線的距離即可得解;(2)設(shè),由平面向量的知識(shí)可得,進(jìn)而可得,再由斜率公式及基本不等式即可得解.【詳解】(1)拋物線的焦點(diǎn),準(zhǔn)線方程為,由題意,該拋物線焦點(diǎn)到準(zhǔn)線的距離為,所以該拋物線的方程為;(2)[方法一]:軌跡方程+基本不等式法設(shè),則,所以,由在拋物線上可得,即,所以直線的斜率,當(dāng)時(shí),;當(dāng)時(shí),,當(dāng)時(shí),因?yàn)椋藭r(shí),當(dāng)且僅當(dāng),即時(shí),等號(hào)成立;當(dāng)時(shí),;綜上,直線斜率的最大值為.[方法二]:【最優(yōu)解】軌跡方程+數(shù)形結(jié)合法同方法一得到點(diǎn)Q的軌跡方程為設(shè)直線的方程為,則當(dāng)直線與拋物線相切時(shí),其斜率k取到最值.聯(lián)立得,其判別式,解得,所以直線斜率的最大值為[方法三]:軌跡方程+換元求最值法同方法一得點(diǎn)Q的軌跡方程為設(shè)直線的斜率為k,則令,則的對(duì)稱軸為,所以.故直線斜率的最大值為[方法四]參數(shù)+基本不等式法由題可設(shè)因,所以于是,所以則直線的斜率為當(dāng)且僅當(dāng),即,時(shí)等號(hào)成立,所以直線斜率的最大值為【整體點(diǎn)評(píng)】方法一根據(jù)向量關(guān)系,利用代點(diǎn)法求得Q的軌跡方程,得到直線OQ的斜率關(guān)于的表達(dá)式,然后利用分類討論,結(jié)合基本不等式求得最大值;方法二同方法一得到點(diǎn)Q的軌跡方程,然后利用數(shù)形結(jié)合法,利用判別式求得直線OQ的斜率的最大值,為最優(yōu)解;方法三同方法一求得Q的軌跡方程,得到直線的斜率k的平方關(guān)于的表達(dá)式,利用換元方法轉(zhuǎn)化為二次函數(shù)求得最大值,進(jìn)而得到直線斜率的最大值;方法四利用參數(shù)法,由題可設(shè),求得x,y關(guān)于的參數(shù)表達(dá)式,得到直線的斜率關(guān)于的表達(dá)式,結(jié)合使用基本不等式,求得直線斜率的最大值.19、(1);(2);(3)或.【解析】(1)連接ME,證明即可計(jì)算作答.(2)以為原點(diǎn),的方向分別為軸正方向建立空間直角坐標(biāo)系,借助空間向量計(jì)算點(diǎn)到平面的距離即可.(3)由(2)中空間直角坐標(biāo)系,借助空間向量求平面與平面所成角的余弦即可計(jì)算作答.【小問(wèn)1詳解】在三棱柱中,因,即點(diǎn)在上,連接ME,如圖,因平面面,面面,則有,而為中點(diǎn),于是得為的中點(diǎn),所以.【小問(wèn)2詳解】在三棱柱中,面面,則點(diǎn)到平面的距離等于點(diǎn)到平面的距離,又為正方形,即,而平面,以為原點(diǎn),的方向分別為軸正方向建立空間直角坐標(biāo)系,如圖,依題意,,則,,設(shè)平面的法向量為,則,令,得,又,則到平面的距離,所以點(diǎn)到平面的距離為.【小問(wèn)3詳解】因,則,,設(shè)面的法向量為,則,令,得,于是得,而平面與平面所成角的正弦值為,則,即,整理得,解得或,所以的值是或.【點(diǎn)睛】易錯(cuò)點(diǎn)睛:空間向量求二面角時(shí),一是兩平面的法向量的夾角不一定是所求的二面角,二是利用方程思想進(jìn)行向量運(yùn)算,要認(rèn)真細(xì)心,準(zhǔn)確計(jì)算.20、(1)在上單調(diào)遞減,在上單調(diào)遞增,函數(shù)有極小值,無(wú)極大值(2)【解析】(1)利用導(dǎo)數(shù)的正負(fù)判斷函數(shù)的單調(diào)性,然后由極值的定義求解即可;(2)分和兩種情況分析求解,當(dāng)時(shí),不等式變形為在,上有解,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求解的最小值,即可得到答案【小問(wèn)1詳解】當(dāng)時(shí),,所以當(dāng)時(shí);當(dāng)時(shí),所以在上單調(diào)遞減,在上單調(diào)遞增,所以當(dāng)時(shí)函數(shù)有極小值,無(wú)極大值.【小問(wèn)2詳解】因?yàn)樵谏嫌薪?,所以在上有解,?dāng)時(shí),不等式成立,此時(shí),當(dāng)時(shí)在上有解,令,則由(1)知時(shí),即,當(dāng)時(shí);當(dāng)時(shí),所以在上單調(diào)遞減,在上單調(diào)遞增,所以當(dāng)時(shí),,所以,綜上可知,實(shí)數(shù)a的取值范圍是.點(diǎn)睛】利用導(dǎo)數(shù)研究不等式恒成立問(wèn)題或有解問(wèn)題的策略為:通常構(gòu)造新函數(shù)或參變量分離,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值從而求得參數(shù)的取值范圍21、(1)單調(diào)遞增區(qū)間(?∞,?1)和(4,+∞),單調(diào)遞減區(qū)間(?1,4)(2)【解析】(1)求出,令,由導(dǎo)數(shù)的正負(fù)即可得到函數(shù)f(x)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)求出函數(shù)在區(qū)間中的單調(diào)性,求出極大值和極小值以及區(qū)間端點(diǎn)的函數(shù)值,比較大小即可得到答案【小問(wèn)1詳解】由函數(shù)得,令,解得x<?1或x>4,;令,解得?1<x<4,故函數(shù)f(x)的單調(diào)遞增區(qū)間為(?∞,?1)和(4,+∞),單調(diào)遞減區(qū)間為(?1,4);【小問(wèn)2詳解】由(1)可知,當(dāng)x∈[?3,?1)時(shí),,f(x)單調(diào)遞增,當(dāng)x∈(?1,4)時(shí),,f(x)單調(diào)遞減,當(dāng)x∈(4,6]時(shí),,f(x)單調(diào)遞增,所以當(dāng)x=?1時(shí),函數(shù)f(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車(chē)文化課程介紹
- 福建省廈門(mén)市同安實(shí)驗(yàn)中學(xué)2025-2026學(xué)年七年級(jí)上學(xué)期期末語(yǔ)文試題( 含答案)
- 化工儲(chǔ)罐培訓(xùn)材料
- 飛蛾介紹教學(xué)課件
- 鋼結(jié)構(gòu)技術(shù)規(guī)范執(zhí)行要點(diǎn)
- 2026年度菏澤鄄城縣事業(yè)單位公開(kāi)招聘初級(jí)綜合類崗位人員參考考試題庫(kù)及答案解析
- 2026年?yáng)|北電力大學(xué)公開(kāi)招聘博士人才1號(hào)(73人)參考考試題庫(kù)及答案解析
- 2026河南平頂山文化藝術(shù)職業(yè)學(xué)院招聘48人參考考試題庫(kù)及答案解析
- 市場(chǎng)推廣宣傳公司財(cái)務(wù)管理制度
- cosplay中國(guó)活動(dòng)策劃方案(3篇)
- 2026貴州省黔晟國(guó)有資產(chǎn)經(jīng)營(yíng)有限責(zé)任公司面向社會(huì)招聘中層管理人員2人備考考試試題及答案解析
- 南京航空航天大學(xué)飛行器制造工程考試試題及答案
- 陶瓷工藝品彩繪師改進(jìn)水平考核試卷含答案
- 2025廣東百萬(wàn)英才匯南粵惠州市市直事業(yè)單位招聘急需緊缺人才31人(公共基礎(chǔ)知識(shí))測(cè)試題附答案
- 粉塵防護(hù)知識(shí)課件
- (2025年)糧食和物資儲(chǔ)備局招聘考試題庫(kù)(答案+解析)
- 中醫(yī)外科乳房疾病診療規(guī)范診療指南2023版
- 2023-2024學(xué)年江西省贛州市章貢區(qū)文清實(shí)驗(yàn)學(xué)校數(shù)學(xué)六年級(jí)第一學(xué)期期末經(jīng)典模擬試題含答案
- DB36-T 1158-2019 風(fēng)化殼離子吸附型稀土礦產(chǎn)地質(zhì)勘查規(guī)范
- 城市道路照明路燈工程施工組織方案資料
- 手術(shù)標(biāo)本管理護(hù)理質(zhì)量控制考核標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論