版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
吉林省白城市白城市第十四中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),,則與的等比中項(xiàng)為()A. B.C. D.2.已知拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,M是拋物線上一點(diǎn),過點(diǎn)M作MN⊥l于N.若△MNF是邊長為2的正三角形,則p=()A. B.C.1 D.23.若的解集是,則等于()A.-14 B.-6C.6 D.144.在中國共產(chǎn)黨建黨100周年之際,廣安市某中學(xué)組織了“黨史知識(shí)競賽”活動(dòng),已知該校共有高中學(xué)生1000人,用分層抽樣的方法從該校高中學(xué)生中抽取一個(gè)容量為25的樣本參加活動(dòng),其中高二年級(jí)抽取了8人,則該校高二年級(jí)學(xué)生人數(shù)為()A.960 B.720C.640 D.3205.在等差數(shù)列中,,且,,,構(gòu)成等比數(shù)列,則公差()A.0或2 B.2C.0 D.0或6.已知實(shí)數(shù),滿足,則的最大值為()A. B.C. D.7.已知等比數(shù)列{an}中,,,則()A. B.1C. D.48.已知函數(shù),,若,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.9.已知數(shù)列的通項(xiàng)公式為,且數(shù)列是遞增數(shù)列,則實(shí)數(shù)的取值范圍是()A. B.C. D.10.若方程表示雙曲線,則實(shí)數(shù)m的取值范圍是()A. B.C. D.11.已知橢圓是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),設(shè)以為對(duì)角線的橢圓內(nèi)接平行四邊形的一組鄰邊斜率分別為,則()A.1 B.C. D.12.已知等差數(shù)列的前項(xiàng)和為,若,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左、右焦點(diǎn)分別為,雙曲線左支上點(diǎn)滿足,則的面積為_________14.已知某農(nóng)場某植物高度,且,如果這個(gè)農(nóng)場有這種植物10000棵,試估計(jì)該農(nóng)場這種植物高度在區(qū)間上的棵數(shù)為______.參考數(shù)據(jù):若,則,,.15.已知蜥蜴的體溫與陽光照射的關(guān)系可近似為,其中為蜥蜴的體溫(單位:℃)為太陽落山后的時(shí)間(單位:).當(dāng)________時(shí),蜥蜴體溫的瞬時(shí)變化率為16.已知圓:,圓:,則圓與圓的位置關(guān)系是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知;.(1)若為真命題,求實(shí)數(shù)的取值范圍;(2)若為假命題,為真命題,求實(shí)數(shù)的取值范圍.18.(12分)已知圓過點(diǎn)且與圓外切于點(diǎn),直線將圓分成弧長之比為的兩段圓?。?)求圓的標(biāo)準(zhǔn)方程;(2)直線的斜率19.(12分)如圖,在四棱錐中,平面,是等邊三角形.(1)證明:平面平面.(2)求點(diǎn)到平面的距離.20.(12分)已知在長方形ABCD中,AD=2AB=2,點(diǎn)E是AD的中點(diǎn),沿BE折起平面ABE,使平面ABE⊥平面BCDE.(1)求證:在四棱錐A-BCDE中,AB⊥AC.(2)在線段AC上是否存在點(diǎn)F,使二面角A-BE-F的余弦值為?若存在,找出點(diǎn)F的位置;若不存在,說明理由.21.(12分)在正方體中,、、分別是、、的中點(diǎn)(1)證明:平面平面;(2)證明:22.(10分)已知函數(shù)(1)若函數(shù)的圖象在點(diǎn)處的切線與平行,求b的值;(2)在(1)的條件下證明:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用等比中項(xiàng)的定義可求得結(jié)果.【詳解】由題意可知,與的等比中項(xiàng)為.故選:C.2、C【解析】根據(jù)正三角形的性質(zhì),結(jié)合拋物線的性質(zhì)進(jìn)行求解即可.【詳解】如圖所示:準(zhǔn)線l與橫軸的交點(diǎn)為,由拋物線的性質(zhì)可知:,因?yàn)槿簟鱉NF是邊長為2的正三角形,所以,,顯然,在直角三角形中,,故選:C3、A【解析】由一元二次不等式的解集,結(jié)合根與系數(shù)關(guān)系求參數(shù)a、b,即可得.【詳解】∵的解集為,∴-5和2為方程的兩根,∴有,解得,∴.故選:A.4、D【解析】由分層抽樣各層成比例計(jì)算即可【詳解】設(shè)高二年級(jí)學(xué)生人數(shù)為,則,解得故選:D5、A【解析】根據(jù)等比中項(xiàng)的性質(zhì)和等差數(shù)列的通項(xiàng)公式建立方程,可解得公差d得選項(xiàng).【詳解】解:因?yàn)樵诘炔顢?shù)列中,,且,,,構(gòu)成等比數(shù)列,所以,即,所以,解得或,故選:A.6、A【解析】畫出不等式組所表示的平面區(qū)域,利用直線的斜率公式模型進(jìn)行求解即可.【詳解】不等式組表示的平面區(qū)域如下圖所示:,代數(shù)式表示不等式組所表示的平面區(qū)域內(nèi)的點(diǎn)與點(diǎn)連線的斜率,由圖象可知:直線的斜率最大,由,即,即的最大值為:,因此的最大值為,故選:A7、D【解析】設(shè)公比為,然后由已知條件結(jié)合等比數(shù)列的通項(xiàng)公式列方程求出,從而可求出,【詳解】設(shè)公比為,因?yàn)榈缺葦?shù)列{an}中,,,所以,所以,解得,所以,得故選:D8、A【解析】由定義證明函數(shù)的單調(diào)性,再由函數(shù)不等式恒能成立的性質(zhì)得出,從而得出實(shí)數(shù)的取值范圍.【詳解】任取,,即函數(shù)在上單調(diào)遞減,若,使得,則即故選:A【點(diǎn)睛】結(jié)論點(diǎn)睛:本題考查不等式恒成立問題,解題關(guān)鍵是轉(zhuǎn)化為求函數(shù)的最值,轉(zhuǎn)化時(shí)要注意全稱量詞與存在量詞對(duì)題意的影響.等價(jià)轉(zhuǎn)化如下:(1),,使得成立等價(jià)于(2),,不等式恒成立等價(jià)于(3),,使得成立等價(jià)于(4),,使得成立等價(jià)于9、C【解析】利用遞增數(shù)列的定義即可.【詳解】由,∴,即是小于2n+1的最小值,∴,故選:C10、A【解析】方程化為圓錐曲線(橢圓與雙曲線)標(biāo)準(zhǔn)方程的形式,然后由方程表示雙曲線可得不等關(guān)系【詳解】解:方程可化為,它表示雙曲線,則,解得.故選:A11、C【解析】根據(jù)橢圓的對(duì)稱性和平行四邊形的性質(zhì)進(jìn)行求解即可.【詳解】是橢圓上關(guān)于原點(diǎn)對(duì)稱兩點(diǎn),所以不妨設(shè),即,因?yàn)槠叫兴倪呅我彩侵行膶?duì)稱圖形,所以也是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),所以不妨設(shè),即,,得:,即,故選:C12、B【解析】根據(jù)和可求得,結(jié)合等差數(shù)列通項(xiàng)公式可求得.【詳解】設(shè)等差數(shù)列公差為,由得:;又,,.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】由雙曲線方程可得,利用雙曲線定義,以及直角三角形的勾股定理可得,由此求得答案.【詳解】由雙曲線的左、右焦點(diǎn)分別為,雙曲線左支上點(diǎn)滿足,可得:,則,且,故,所以,故,故答案為:314、1359【解析】由已知求得,則,結(jié)合已知求得,乘以10000得答案【詳解】解:由,得,又,,則,估計(jì)該農(nóng)場這種植物高度在區(qū)間,上的棵數(shù)為故答案為:135915、5【解析】求得導(dǎo)函數(shù),令,計(jì)算即可得出結(jié)果.【詳解】,,令,得:.解得:.時(shí)刻min時(shí),蜥蜴的體溫的瞬時(shí)變化率為故答案為:5.16、相交【解析】把兩個(gè)圓的方程化為標(biāo)準(zhǔn)方程,分別找出兩圓的圓心坐標(biāo)和半徑,利用兩點(diǎn)間的距離公式求出兩圓心的距離,與半徑和與差的關(guān)系比較即可知兩圓位置關(guān)系.【詳解】化為,化為,則兩圓圓心分別為:,,半徑分別為:,圓心距為,,所以兩圓相交.故答案為:相交.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】解不等式求得為真、為真分別對(duì)應(yīng)的解集;(1)由為真可得全真,兩解集取交集可得結(jié)果;(2)由和的真假性可得一真一假,則分為真假和假真兩種情況求得解集.【小問1詳解】若為真,則,即,即,所以或,若為真,則,所以,因?yàn)闉檎婷},所以均為真命題.所以實(shí)數(shù)的取值范圍是.【小問2詳解】若為假命題,為真命題,則一真一假,若真假,則,解得或,若假真,則,解得,綜上所述,實(shí)數(shù)的取值范圍是.18、(1);(2).【解析】(1)分析可知圓心在軸上,可設(shè)圓心,根據(jù)圓過點(diǎn)、可得出關(guān)于的方程,求出的值,可得出圓心的坐標(biāo),進(jìn)而可求得圓的半徑,即可得出圓的標(biāo)準(zhǔn)方程;(2)利用幾何關(guān)系可求得圓心到直線的距離為,再利用點(diǎn)到直線的距離公式可求得的值.【小問1詳解】解:圓的圓心為,記點(diǎn)、,直線即為軸,因?yàn)閳A與圓外切于點(diǎn),則圓心在軸上,設(shè)圓心,由可得,解得,則圓心,所以,圓的半徑為,因此,圓的標(biāo)準(zhǔn)方程為.【小問2詳解】解:由題意可知,直線截圓所得的弦在圓上對(duì)應(yīng)的圓心角為,則圓心到直線的距離為,由點(diǎn)到直線的距離公式可得,解得.19、(1)證明見解析;(2).【解析】(1)根據(jù)等邊三角形的性質(zhì)、線面垂直的性質(zhì),結(jié)合面面垂直的判定定理進(jìn)行證明即可;(2)利用余弦定理,結(jié)合三棱錐的等積性進(jìn)行求解即可.【小問1詳解】證明:設(shè),因?yàn)槭堑冗吶切?,且,所以是的中點(diǎn),則.又,所以,所以,即.又平面平面,所以.又,所以平面.因?yàn)槠矫?,所以平面平?【小問2詳解】解:因?yàn)?,所?在中,,所以,則又平面,所以.如圖,連接,則,所以.設(shè)點(diǎn)到平面的距離為,因?yàn)?,所以,解得,即點(diǎn)到平面的距離為.20、(1)證明見解析(2)點(diǎn)F為線段AC的中點(diǎn)【解析】(1)由平面幾何知識(shí)證得CE⊥BE,再根據(jù)面面垂直的性質(zhì),線面垂直的判定和性質(zhì)可得證;(2)取BE的中點(diǎn)O,以O(shè)為原點(diǎn),分別以的方向?yàn)閤軸,y軸,z軸建立空間直角坐標(biāo)系,假設(shè)在線段AC上存在點(diǎn)F,設(shè)=λ,運(yùn)用二面角的向量求解方法可求得,可得點(diǎn)F的位置.【小問1詳解】證明:因?yàn)樵陂L方形ABCD中,AD=2AB=2,點(diǎn)E是AD的中點(diǎn),所以BE=CE=2,又BC=2,所以,所以CE⊥BE,又平面ABE⊥平面BCDE,面面,所以CE⊥平面ABE,所以AB⊥CE.又AB⊥AE,,所以AB⊥平面AEC,即得AB⊥AC.【小問2詳解】解:存在點(diǎn)F,F(xiàn)為線段AC的中點(diǎn).由(1)得△ABE和△BEC均為等腰直角三角形,取BE的中點(diǎn)O,則,又平面ABE⊥平面BCDE,面面,所以面,以O(shè)為原點(diǎn),分別以的方向?yàn)閤軸,y軸,z軸建立空間直角坐標(biāo)系,如圖所示,取平面ABE的一個(gè)法向量為.假設(shè)在線段AC上存在點(diǎn)F,使二面角A-BE-F的余弦值為.則A(0,0,1),B(1,0,0),C(-1,2,0),E(-1,0,0),=(1,0,1),=(-1,2,-1),設(shè)=λ,則+λ=(1-λ,2λ,1-λ),又=(2,0,0),設(shè)平面BEF的法向量為,可得,即得,可取y=1,得,所以,解得λ=,即當(dāng)點(diǎn)F為線段AC的中點(diǎn)時(shí),二面角A-BE-F的余弦值為.21、(1)證明見解析;(2)證明見解析.【解析】(1)連接,分別證明出平面,平面,利用面面平行的判定定理可證得結(jié)論成立;(2)證明出平面,利用線面垂直的性質(zhì)可證得結(jié)論成立.【小問1詳解】證明:連接,在正方體中,,,所以,四邊形為平行四邊形,所以,在中,、分別為、的中點(diǎn),所以,,所以,,因?yàn)槠矫?,平面,所以,平面因?yàn)榍?,、分別為、的中點(diǎn),則且,所以,四邊形為平行四邊形,則,,平面,平面,平面又,所以,平面平面【小問2詳解】證明:在正方體中,平面,平面,,因?yàn)樗倪呅螢檎叫?,則,因?yàn)?,則平面由知(1)平面平面,所以,平面,平面,因此,22、(1);(2)證明見解析.【解析】(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年雙溪鄉(xiāng)人民政府關(guān)于公開選拔重點(diǎn)公益林護(hù)林員備考題庫及答案詳解一套
- 2025年國家知識(shí)產(chǎn)權(quán)局專利局專利審查協(xié)作四川中心公開招聘工作人員40人備考題庫及參考答案詳解
- 2024年廣州市海珠區(qū)社區(qū)專職人員招聘考試真題
- 2025年甘肅電器科學(xué)研究院聘用人員招聘備考題庫及答案詳解1套
- 玻璃鋼水箱課程設(shè)計(jì)三
- 2025年可再生能源供電十年市場報(bào)告
- 2025年齊齊哈爾市總工會(huì)工會(huì)社會(huì)工作者招聘39人考試參考試題及答案解析
- 2025江蘇常州市體育局下屬事業(yè)單位招聘1人備考核心試題附答案解析
- 2025年生物質(zhì)能發(fā)電技術(shù)標(biāo)準(zhǔn)行業(yè)報(bào)告
- 2025年中國科學(xué)院心理研究所認(rèn)知與發(fā)展心理學(xué)研究室杜憶研究組招聘備考題庫及1套參考答案詳解
- 標(biāo)準(zhǔn)工時(shí)統(tǒng)一表格(模板)
- 快遞小哥交通安全課件
- 監(jiān)理安全保證體系實(shí)施細(xì)則范文(2篇)
- 二手設(shè)備交易協(xié)議范本
- YYT 0657-2017 醫(yī)用離心機(jī)行業(yè)標(biāo)準(zhǔn)
- 紀(jì)錄片《蘇東坡》全6集(附解說詞)
- GB/T 43824-2024村鎮(zhèn)供水工程技術(shù)規(guī)范
- AI對(duì)抗性攻擊防御機(jī)制
- DRBFM的展開詳細(xì)解讀2
- 四環(huán)素的發(fā)酵工藝課件
- 泥漿護(hù)壁鉆孔灌注樁的施工
評(píng)論
0/150
提交評(píng)論