版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
銀川市重點中學2025屆數(shù)學高二上期末統(tǒng)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.橢圓:的左焦點為,橢圓上的點與關(guān)于坐標原點對稱,則的值是()A.3 B.4C.6 D.82.如圖,在平行六面體中,AC與BD的交點為M.設,則下列向量中與相等的向量是()A. B.C. D.3.數(shù)列滿足,,,則數(shù)列的前10項和為()A.60 B.61C.62 D.634.已知點,則滿足點到直線的距離為,點到直線距離為的直線的條數(shù)有()A.1 B.2C.3 D.45.()A.-2 B.-1C.1 D.26.已知雙曲線,則雙曲線的離心率為()A. B.C. D.7.在等差數(shù)列中,,,則數(shù)列的公差為()A.1 B.2C.3 D.48.已知直線l1:mx-2y+1=0,l2:x-(m-1)y-1=0,則“m=2”是“l(fā)1平行于l2”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件9.若函數(shù)的導函數(shù)為偶函數(shù),則的解析式可能是()A. B.C. D.10.已知直線與圓相交于兩點,當?shù)拿娣e最大時,的值是()A. B.C. D.11.如圖是函數(shù)的導數(shù)的圖象,則下面判斷正確的是()A.在內(nèi)是增函數(shù)B.在內(nèi)是增函數(shù)C.在時取得極大值D.在時取得極小值12.已知正實數(shù)x,y滿足4x+3y=4,則的最小值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,且,則的值是_________.14.直線l過拋物線的焦點F,與拋物線交于A,B兩點,若,則直線l的斜率為______15.如圖,設正方形ABCD與正方形ABEF的邊長都為1,若平面ABCD,則異面直線AC與BF所成角的大小為______16.如圖,在長方體ABCD﹣A'B'C'D'中,點P,Q分別是棱BC,CD上的動點,BC=4,CD=3,CC'=2,直線CC'與平面PQC'所成的角為30°,則△PQC'的面積的最小值是__三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某公司從2020年初起生產(chǎn)某種高科技產(chǎn)品,初始投入資金為1000萬元,到年底資金增長50%.預計以后每年資金增長率與第一年相同,但每年年底公司要扣除消費資金x萬元,余下資金再投入下一年的生產(chǎn).設第n年年底扣除消費資金后的剩余資金為萬元.(1)用x表示,,并寫出與的關(guān)系式;.(2)若企業(yè)希望經(jīng)過5年后,使企業(yè)剩余資金達3000萬元,試確定每年年底扣除的消費資金x的值(精確到萬元).18.(12分)已知函數(shù).(1)若函數(shù)的圖象在處的切線方程為,求的值;(2)若函數(shù)在上是增函數(shù),求實數(shù)的最大值.19.(12分)四棱錐中,平面,四邊形為平行四邊形,(1)若為中點,求證平面;(2)若,求面與面的夾角的余弦值.20.(12分)某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此做了四次試驗,得到的數(shù)據(jù)如表:零件的個數(shù)x(個)2345加工的時間y(小時)2.5344.5(1)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖.(2)求出y關(guān)于x的線性回歸方程,試預測加工10個零件需要多少小時?(注:,)21.(12分)某中學共有名學生,其中高一年級有名學生,為了解學生的睡眠情況,用分層抽樣的方法,在三個年級中抽取了名學生,依據(jù)每名學生的睡眠時間(單位:小時),繪制出了如圖所示的頻率分布直方圖.(1)求樣本中高一年級學生的人數(shù)及圖中的值;(2)估計樣本數(shù)據(jù)的中位數(shù)(保留兩位小數(shù));(3)估計全校睡眠時間超過個小時的學生人數(shù).22.(10分)已知點,圓,點Q在圓上運動,的垂直平分線交于點P.(1)求動點P的軌跡的方程;(2)過點的動直線l交曲線C于A、B兩點,在y軸上是否存在定點T,使以AB為直徑的圓恒過這個點?若存在,求出點T的坐標,若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】令橢圓C的右焦點,由已知條件可得四邊形為平行四邊形,再利用橢圓定義計算作答.【詳解】令橢圓C的右焦點,依題意,線段與互相平分,于是得四邊形為平行四邊形,因此,而橢圓:的長半軸長,所以.故選:D2、B【解析】根據(jù)代入計算化簡即可.【詳解】故選:B.3、B【解析】討論奇偶性,應用等差、等比前n項和公式對作分組求和即可.【詳解】當且為奇數(shù)時,,則,當且為偶數(shù)時,,則,∴.故選:B.4、D【解析】以為圓心,為半徑,為圓心,為半徑分別畫圓,將所求轉(zhuǎn)化為求圓與圓的公切線條數(shù),判斷兩圓的位置關(guān)系,從而得公切線條數(shù).【詳解】以為圓心,為半徑,為圓心,為半徑分別畫圓,如圖所示,由題意,滿足點到直線的距離為,點到直線距離為的直線的條數(shù)即為圓與圓的公切線條數(shù),因為,所以兩圓外離,所以兩圓的公切線有4條,即滿足條件的直線有4條.故選:D【點睛】解答本題的關(guān)鍵是將滿足點到直線的距離為,點到直線距離為的直線的條數(shù)轉(zhuǎn)化為圓與圓的公切線條數(shù),從而根據(jù)圓與圓的位置關(guān)系判斷出公切線條數(shù).5、A【解析】利用微積分基本定理計算得到答案.【詳解】.故選:.【點睛】本題考查了定積分的計算,意在考查學生的計算能力.6、D【解析】由雙曲線的方程及雙曲線的離心率即可求解.【詳解】解:因為雙曲線,所以,所以雙曲線的離心率,故選:D.7、B【解析】將已知條件轉(zhuǎn)化為的形式,由此求得.【詳解】在等差數(shù)列中,設公差為d,由,,得,解得.故選:B8、C【解析】利用兩直線平行的等價條件求得m,再結(jié)合充分必要條件進行判斷即可.【詳解】由直線l1平行于l2得-m(m-1)=1×(-2),得m=2或m=-1,經(jīng)驗證,當m=-1時,直線l1與l2重合,舍去,所以“m=2”是“l(fā)1平行于l2”的充要條件,故選C.【點睛】本題考查兩直線平行的條件,準確計算是關(guān)鍵,注意充分必要條件的判斷是基礎(chǔ)題9、C【解析】根據(jù)題意,求出每個函數(shù)的導函數(shù),進而判斷答案.【詳解】對A,,為奇函數(shù);對B,,為奇函數(shù);對C,,為偶函數(shù);對D,,既不是奇函數(shù)也不是偶函數(shù).故選:C.10、C【解析】利用點到直線的距離公式和弦長公式可以求出的面積是關(guān)于的一個式子,即可求出答案.【詳解】圓心到直線的距離,弦長為..當,即時,取得最大值.故選:C.11、B【解析】根據(jù)圖象判斷的單調(diào)性,由此求得的極值點,進而確定正確選項.【詳解】由圖可知,在區(qū)間上,單調(diào)遞減;在區(qū)間上,單調(diào)遞增.所以不是的極值點,是的極大值點.所以ACD選項錯誤,B選項正確.故選:B12、A【解析】將4x+3y=4變形為含2x+1和3y+2的等式,即2(2x+1)+(3y+2)=8,再由換元法、基本不等式換“1”的代換求解即可【詳解】由正實數(shù)x,y滿足4x+3y=4,可得2(2x+1)+(3y+2)=8,令a=2x+1,b=3y+2,可得2a+b=8,∴,即,當且僅當時取等號,∴的最小值為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)空間向量可得,結(jié)合計算即可.【詳解】由題意知,,所以,解得.故答案:314、【解析】如圖,設,兩點的拋物線的準線上的射影分別為,,過作的垂線,在三角形中,等于直線的傾斜角,其正切值即為值,利用在直角三角形中,求得,從而得出直線的斜率【詳解】解:如圖,當在第一象限時,設,兩點的拋物線的準線上的射影分別為,,過作的垂線,在三角形中,等于直線的傾斜角,其正切值即為值,由拋物線的定義可知:設,則,,,在直角三角形中,,所以,則直線的斜率;當在第四象限時,同理可得,直線的斜率,綜上可得直線l的斜率為;故答案為:15、##【解析】建立空間直角坐標系,利用空間向量法求出異面直線所成角;【詳解】解:如圖建立空間直角坐標系,則、、、,所以,,設直線與所成角為,則,因為,所以;故答案為:16、8【解析】設三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由體積法求得的關(guān)系,由直線CC’與平面C’PQ成的角為30°,得到xy≥8,再由VC﹣C′PQ=VC′﹣CPQ,能求出△PQC'的面積的最小值【詳解】解:設三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由長方體性質(zhì)知兩兩垂直,所以,,,,,所以,由得,所以,∵直線CC’與平面C’PQ成的角為30°,∴h=2,∴,,∴xy≥8,再由體積可知:VC﹣C′PQ=VC′﹣CPQ,得,S△C′PQ=xy,∴△PQC'的面積的最小值是8故答案為:8三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)x=348【解析】(1)根據(jù)題意直接得,,進而歸納出;(2)由(1)可得,利用等比數(shù)列的求和公式可得,結(jié)合即可計算出d的值.【小問1詳解】由題意知,,,;【小問2詳解】由(1)可得,,則,所以,即,當時,,解得,當時,萬元.故該企業(yè)每年年底扣除消費資金為348萬元時,5年后企業(yè)剩余資金為3000萬元.18、(1);(2).【解析】(1)先對函數(shù)求導,再根據(jù)在處的切線斜率可得到參數(shù)的值,然后代入,求出的值,則即可得出;(2)根據(jù)函數(shù)在上是增函數(shù),可得,即恒成立,再進行參變分離,構(gòu)造函數(shù),對進行求導分析,找出最小值,即實數(shù)的最大值【詳解】解:(1)由題意,函數(shù).故,則,由題意,知,即.又,則.,即..(2)由題意,可知,即恒成立,恒成立.設,則.令,解得.令,解得.令,解得x.在上單調(diào)遞減,在上單調(diào)遞增,在處取得極小值..,故的最大值為.【點睛】本題主要考查利用某點處的一階導數(shù)分析得出參數(shù)的值,參變量分離方法的應用,不等式的計算能力.本題屬中檔題19、(1)證明見解析(2)【解析】(1)先證,,再證平面即可;(2)建立空間直角坐標系,先求出面與面的法向量,再計算夾角余弦值即可.小問1詳解】取中點,連接,則四邊形為平行四邊形,,為直角三角形,且.又平面,平面,.又,平面.【小問2詳解】,為等邊三角形,取中點,連接,則,以為坐標原點,分別以為軸建立空間坐標系,如圖令,則,設面的法向量為,則由得取,則設面的法向量為,則由得取,則設面與面的夾角為,則所以面與面的夾角的余弦值為.20、(1)見解析;(2),預測加工10個零件大約需要8.05小時【解析】(1)由題意描點作出散點圖;(2)根據(jù)題中的公式分別求和,即得,令代入求出的值即可.【詳解】(1)散點圖(2),,,∴,,∴回歸直線方程:,令,得,∴預測加工10個零件大約需要8.05小時.【點睛】本題主要考查了散點圖,利用最小二乘法求線性回歸方程,考查了學生基本作圖能力和運算求解能力.21、(1)樣本中高一年級學生的人數(shù)為,;(2);(3)【解析】(1)利用分層抽樣可求得樣本中高一年級學生的人數(shù),利用頻率直方圖中所有矩形的面積之和為可求得的值;(2)利用中位數(shù)左邊的矩形面積之和為可求得中位數(shù)的值;(3)利用頻率分布直方圖可計算出全校睡眠時間超過個小時的學生人數(shù).【小問1詳解】解:樣本中高一年級學生的人數(shù)為.,解得.【小問2詳解】解:設中位數(shù)為,前兩個矩形的面積之和為,前三個矩形的面積之和為,所以,則,得,故樣本數(shù)據(jù)的中位數(shù)約為.【小問3詳解】解:由圖可知,樣本數(shù)據(jù)落在的頻率為,故全校睡眠時間超過個小時的學生人數(shù)約為.22、(1);(2)存在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 九年級下冊英語月考考試卷帶答案解析
- 臨夏回族自治州2024年甘肅省臨夏州引進急需緊缺人才376人(第二批)筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 《GBT 34835-2017 電氣安全 與信息技術(shù)和通信技術(shù)網(wǎng)絡連接設備的接口分類》專題研究報告
- 醫(yī)院行政部門崗位的考核重點解析
- 應急心理疏導員面試題集
- 面試題庫誠通控股投資發(fā)展部經(jīng)理崗位
- 中國移動通信技術(shù)專員面試題目全解
- 零售連鎖企業(yè)市場拓展經(jīng)理的招聘考試題目及答案參考
- 法務專員面試題及合同審核參考答案
- 2025年區(qū)域氣候變化適應項目可行性研究報告
- 2025北京熱力熱源分公司招聘10人參考筆試題庫及答案解析
- 2025年湖南省法院系統(tǒng)招聘74名聘用制書記員筆試參考題庫附答案
- 2025廣西機電職業(yè)技術(shù)學院招聘教職人員控制數(shù)人員79人備考題庫及答案解析(奪冠)
- 2026屆高考政治一輪復習:必修2 經(jīng)濟與社會 必背主干知識點清單
- 大學生校園創(chuàng)新創(chuàng)業(yè)計劃書
- 護士職業(yè)壓力管理與情緒調(diào)節(jié)策略
- 貴州國企招聘:2025貴州涼都能源有限責任公司招聘10人備考題庫及答案詳解(必刷)
- 招標人主體責任履行指引
- 2025-2026學年北師大版五年級數(shù)學上冊(全冊)知識點梳理歸納
- 2021年廣東省廣州市英語中考試卷(含答案)
- 我的新式汽車(課件)-人美版(北京)(2024)美術(shù)二年級上冊
評論
0/150
提交評論