機(jī)器學(xué)習(xí)第九章-1_第1頁
機(jī)器學(xué)習(xí)第九章-1_第2頁
機(jī)器學(xué)習(xí)第九章-1_第3頁
機(jī)器學(xué)習(xí)第九章-1_第4頁
機(jī)器學(xué)習(xí)第九章-1_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

MachineLearningCHAPTER9GeneticAlgorithmsOutlineGeneticalgorithmprovideanapproachlearningthatisbasedlooselyonsimulatedevolution.HypothesesaredescribedbybitstringswhoseinterpretationdependsontheapplicationThesearchbeginswithapopulationofinitialhypotheses.ThenextgenerationofpopulationisgeneratedbymeansofoperationssuchasrandommutationandcrossoverHypothesesareevaluatedbyameasureoffitness.Application9.1MotivationGeneticalgorithmsismotivatedbyananalogytobiologicalevolutionGAsgeneratesuccessorhbyrepeatedlymutatingandrecombiningpartsofthebestcurrentlyknownhypothesesHissearchedbyagenerated-and-testbeam-searchThepopularityofGAsismotivatedby: evolutionofbiologicalsystem abilityofsearchingHcontainingcomplexinteractingparts abilityofparallelizingcomputingContentofthischapter9.2GeneticAlgorithmsHypothesisfitnessStructureofGAs: iterativelyupdatingapopulation evaluationofmembersofapopulation generatenewpopulation

AprototypicalgeneticalgorithmGA(Fitness,fitness_threshold,p,r,m)

initializepopulation:P=Generatephypothesesatrandom

Evaluate:ForeachhinP,compute

Fitness(h)

while[max

Fitness(h)]<Fitness_thresholddo createanewgeneration,PS: 1.Select:probabilisticallyselect(1-r)pmembersofPtoaddtoPS.TheprobabilityPr(hi)ofselectinghypothesishifromPisgivenby

Pr(hi)=Fitness(hi)/∑Fitness(hj) 2.Crossover:Probabilisticallyselectr*p/2pairsofhypothesesfromP,accordingtoPr(hi)givenabove.Foreachpair,<h1,h2>,producetwooffspringbyapplyingthecrossoveroperator.AddalloffspringtoPS.

3.Mutate:choosempercentofthemembersofPSwithuniformprobability.Foreach,invertonerandomlyselectedbitinitsrepresentation. 4.update:P=PS

5.Evaluate:foreachhinP,computeFitness(h)ReturnthehypothesisfromPthathasthehighestfitness9.2.1RepresentingHypothesesHypothesesareoftenberepresentedbybitstrings,sotheycanbeeasilymanipulatedbygeneticoperatorsExample:codingif-thenrulesbybitstringsFirstuseabitstringtodescribeaconstraintonthevalueofasingleattributeOutlook:Sunny、Overcast、Rain,canberepresenttedbyabitstringoflengththreeArulecaneasilyberepresentedbyconcatenatingthecorrespondingbitstrings9.2.1RepresentingHypothesesNOTEAbitstringforarulecontainsasubstringforeachattributeinahypothesisspace,evenifaattributeisnotconstrainedbytherulepreconditionsSubstringsofabitstringatspecificlocationsdescribeconstraintsonspecificattributesRepresentationofsetsofrules:concatenatingbitstringsofindividualrulesAsyntacticallylegalbitstringshouldrepresentawell-definedhypothesisHypothesescanberepresentedbysymbolicdescriptionsratherthanbitstrings,forexample,computerprogram9.2.2GeneticoperatorsThegenerationofsuccessorsinaGAisdeterminedbyasetofoperatorsthatrecombineandmutateselectedmembersofthecurrentpopulation.TypicalGAoperatorsformanipulatingbitstringhypothesesinTable9.2Themostcommonoperators:crossoverandmutationThecrossoveroperator:ProducestwonewoffspringfromtwoparentsstringsbycopyingselectedbitsfromeachparentThechoiceofwhichparentcontributesthebitpositioniisdeterminedbyanadditionalstringcalledthecrossovermask:SinglepointcrossoverTwo-pointcrossoverUniformcrossover9.2.2Geneticoperators(2)Mutationoperator:ProducesoffspringfromasingleparentandproducessmallchangestothebitstringMutationisoftenperformedaftercrossoverhasbeenappliedAdditionaloperatorsSpecializingtotheparticularhypothesisrepresentationGeneralizeandspecializerulesinavarietyofdirectedways9.2.3FitnessFunctionandSelectionThefitnessfunctiondefinesthecriterionforrankingpotentialhypothesesIfthetaskistolearnclassificationrules,thenthefitnessfunctiontypicallyhasacomponentthatscorestheclassificationaccuracy(complexityorgenerality)oftheruleoverasetofprovidedtrainingexamples.AprobabilitymethodforselectingahypothesisFitnessproportionateselection(roulette

whellselection),theprobabilityofselectingahisgibvenbytheratioofitsfitnesstothefitnessofothermemberofthecurrentpopulationTournamentselectionRankselection9.3AnIllustrativeExampleAGAcanbeviewedasageneraloptimizationmethodthatsearchesalargespaceofcandidateobjectsseekingonethatperformsbestaccordingtothefitnessfunctionAlthoughnotguaranteedtofindanoptimalobject,GAsoftensucceedinfindinganobjectwithhighfitnessApplicationofGACircuitlayoutJob-shopschedulingFunction-approximationChoosingthenetworktopologyfoeANNGabilSystemDevelopedbyDejongetal.1993.GabilusesaGAtolearnbooleanconceptsThoseconceptsrepresentedbyadisjunctivesetofpropositionrulesItsgeneralizationaccuracyisroughlycomparabletootheralgorithmssuchasC4.5andtherulelearningsystemThealgorithmusedbyGabilisthealgorithmdescribedinTable9.1.Gabilsystem(2)GabilImplementationRepresentation:eachhinGabilcorrespondstoadisjunctivesetofpropositionalrules,encodedasdescribedinsection9.2.1Geneticoperators:MutationoperatorThecrossoveroperator:anextensiontothetwo-pointcrossoveroperatorFitnessfunction:thefitnessofeachhypothesizedrulesetisbasedonitsclassificationaccuracyoverthetrainingdata,Fitness(h)=(correct(h))29.3.1ExtensionsTheadditionoftwonewgeneticoperatorsAddAlternativeDropConditionApplicationMethodTwooperatorswereapplywiththesameprobabilitytoeachhypothesisinthepopulationThebit-stringforhwasextendedtoincludetwobitsthatdeterminewhichoftheseoperatorsmaybeappliedtotheh9.4HypothesisSpaceSearchGAsemployarandomizedbeamsearchmethodtoseekamaximallyfithypothesisThegradientdescentsearchmovessmoothlyfromonehtoanewhthatisverysimilarTheGAcanmovemuchmoreabruptlyTheGAsearchisthereforelesslikelytofallintothesamekindoflocalminimaOnepracticaldifficultyinGAapplicationsistheproblemofcrowding.crowdingisaphenomenoninwhichsomeindividualthatismorehighlyfitthanothersquicklyreproduces,sothatcopiesofthisindividualandverysimilarindividualstakeoveralargefractionofthepopulationItreducesthediversityofthepopulation,therebyslowingfurtherprogressbytheGAHypothesisspacesearch(2)StrategiesforreducingcrowdingAltertheselectionfunction,usingtournamentselectionorrankselectioninplaceoffitnessproportionateroulettewheelselectionFitnesssharing,thefitnessofanindividualisreducedbythepresenceofother,similarindividualsRestrictthekindsofindividualsallowedtorecombinetoformoffspringAllowingonlythemostsimilarindividualstorecombineSpatiallydistributeindividualsandallowonlynearbyindividualstorecombine9.4.1PopulationEvolutionandtheSchemaTheoremTheschematheoremprovidesawaytomathematicallycharacterizetheevolutionovertimeofthepopulationwithinaGA(Holland1975Aschemaisanystringcomposedof0s,1sand*sTheschematheoremcharacterizestheevolutionofthepopulationwithinaGAintermsofthenumberofinstancesrepresentingeachschemaLetm(s,t)denotethenumberofinstancesofschemasinthepopulationattimetTheschematheoremdescribestheexpectedvalueofm(s,t+1)intermsofm(s,t)andotherpropertiesoftheschema,population,andGAalgorithmparametersPopulationEvolutionandtheSchemaTheorem(2)TheevolutionofthepopulationintheGAdependsontheselectionstep,therecombinationstep,andthemutationstepnotations:f(h):fitnessofhn:totalnumberofindividualstheaveragefitnessofallindividualstheaveragefitneeofinstancesofschemasattimetindicatethehisbotharepresentativeofschemaandamemberofthepopulationattimetPopulationEvolutionandtheSchemaTheorem(3)CalculatingE(m(s,t+1))usingtheprobabilitydistributionforselectionEquation9.3statesthattheexpectednumberofinstancesofschemasatt+1isproportionaltotheaveragefitness,andinverselyproportionaltoPopulationEvolutionandtheSchemaTheorem(4)Consideringthecrossoverstepandmutationsteps(consideringthenegativeinfluenceofgeneticoperatorsandonlythecaseofsingle-pointcrossover)

Schematheoremisincompleteisthatitfailstoconsiderthepositiveeffectsofcrossoverandmutation9.5GENETICPRPGRAMMINGGPisaformofevolutionarycomputationinwhichtheindividualsarecomputerprogramsratherthanbitstringsProgramsaretypicallyrepresentedbytreescorrespondingtotheparsetreeoftheprogram,eachfunctioncallisanode,theargumentstothefunctionaregivenbydescendantnodesGPmaintainsapopulationofindividuals,oneachiteration,itproduceanewgenerationofindividualsusingselection,crossover,andmutationThefitnessofanindividualisdeterminedbyexecutingtheprogramonasetoftrainingdataCrossoveroperationsareperformedbyreplacingarandomlychosensubtreeofoneparentprogrambyasuntreefromtheotherparentprogram9.5.2IllustrativeExampleLearninganalgorithmforstackingtheblocks(fig9-3)(Koza1992)DevelopageneralalgorithmforstackingtheblocksintoasinglestackthatspellsawordindependentoftheinitialconfigurationoftheblocksTheactionsavailableallowmovingonlyasingleblockatatime,thetopblockcanbemovedtothetablesurface,orablockonthetablesurfacecanbemovedtothetopofthestackTheprimitivefunctionsforthistaskinclude3terminalarguments:CS(currentstack)TB(topcorrectblock)NN(nextnecessary),9.5.2IllustrativeExample(2)OtherprimitiveintheprogramlanguageMSx:movetostackMTx:movetotableEQxy:equalNOTx:returnTifx=F,returnF,ifx=TDUxy:dountilKozaprovided166trainingsamples,thefitnessofanygivenprogramwastakentobenthenumberoftheseexamplessolvedbythealgorithmThepopulationwasasetof300randomprograms,after10generations,thesystemfindaprogramwhichsolveall166problems

(EQ(DU(MTCS)(NOTCS))(DU(MSNN)(NOTNN)))9.5.3RemarksongeneticProgrammingGPextendsGAtotheevolutionofcompletecomputerprograms.DespiteofthehugesizeofH,GPhasbeendemonstratedtoproduceintriguingresultsinanumberofapplicationsGPhasbeenusedinseveralmorecomplextasksDesigningelectronicfiltercircuitsClassifyingsegmentsofproteinmoleculesInmostcases,theperformanceofGPdependsoncruciallyonthechoiceofrepresentationandonthechoiceoffitnessfunction.9.6ModelsofEvolutionandLearningOneinterestingquestionregardingevolutionarysystem:whatistherelationshipbetweenlearningduringthelifetimeofasingleindividual,andthelongertimeframespecies-levellearningaffordedbyevolution?LamarckianEvolutionEvolutionovermanygenerationswasdirectlyinfluencedbytheexperiencesofindividualorganismsduringtheirlifetimeCurrentscientificevidenceoverwhelminglycontradictsLamarck’smodelRecentcomputerstudieshaveshownthatLamackianprocesscansometimesimprovetheeffectivenessofcomputerizedgeneticalgorithmsModelsofEvolutionandLearning(2)BaldwinEffectIndividuallearningcanalterthecourseofevolutionItisbasedonthefollowingobservationsIfaspeciesisevolvinginachangingenvironment,therewillbeevolutionarypressuretofavorindividualswiththecapabilitytolearnduringtheirlifetime.Thoseindividualswhoareabletolearnmanytraitswillrelylessstronglyontheirgeneticcodeto“hard-wire”traits.Providesanindirectmechanismforindividuallearningtopositivelyimpacttherateofevolutionaryprogress.ModelsofEvolutionAndLea

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論