版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2025屆吉林省吉林市普通中學高一上數(shù)學期末達標檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)是定義在在上的奇函數(shù),且當時,,則函數(shù)的零點個數(shù)為()個A.2 B.3C.6 D.72.下列與的終邊相同的角的集合中正確的是()A. B.C. D.3.函數(shù)的一條對稱軸是()A. B.C. D.4.已知梯形ABCD是直角梯形,按照斜二測畫法畫出它的直觀圖A'B'C'D'(如圖所示),其中A'D'=2,B'C'=4,A'B'=1,則直角梯形DC邊的長度是A.5 B.2C.25 D.5.下列函數(shù)既是定義域上的減函數(shù)又是奇函數(shù)的是A. B.C. D.6.已知直線經(jīng)過點,,則該直線的斜率是A. B.C. D.7.已知,,,則a,b,c的大小關系是A. B.C. D.8.下列各角中與角終邊相同的角是()A.-300° B.-60°C.600° D.1380°9.如果角的終邊經(jīng)過點,則()A. B.C. D.10.四個函數(shù):①;②;③;④的圖象(部分)如下,但順序被打亂,則按照從左到右將圖象對應的函數(shù)序號安排正確的一組是()A.④①②③ B.①④②③C.③④②① D.①④③②二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)是定義在上的奇函數(shù),若時,,則時,__________12.若向量,,且,則_____13.若偶函數(shù)在區(qū)間上單調(diào)遞增,且,,則不等式的解集是___________.14.設,則________.15.已知扇形的圓心角為,半徑為,則扇形的面積為______16.已知函數(shù)的圖象過原點,則___________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.化簡下列各式:;18.已知.(1)求的值(2)求的值.19.已知定義域為的函數(shù)是奇函數(shù).(1)求的值;(2)判斷函數(shù)單調(diào)性(只寫出結(jié)論即可);(3)若對任意的不等式恒成立,求實數(shù)的取值范圍20.已知函數(shù).(1)當時,試判斷并證明其單調(diào)性.(2)若存在,使得成立,求實數(shù)的取值范圍.21.在中,角的對邊分別為,的面積為,已知,,(1)求值;(2)判斷的形狀并求△的面積
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】作出函數(shù),和圖象,可知當時,的零點個數(shù)為3個;再根據(jù)奇函數(shù)的對稱性,可知當時,也有3個零點,再根據(jù),由此可計算出函數(shù)的零點個數(shù).【詳解】在同一坐標系中作出函數(shù),和圖象,如下圖所示:由圖象可知,當時,的零點個數(shù)為3個;又因為函數(shù)和均是定義在在上的奇函數(shù),所以是定義在在上的奇函數(shù),根據(jù)奇函數(shù)的對稱性,可知當時,的零點個數(shù)也為3個,又,所以也是零點;綜上,函數(shù)的零點個數(shù)一共有7個.故選:D.2、C【解析】由任意角的定義判斷【詳解】,故與其終邊相同的角的集合為或角度制和弧度制不能混用,只有C符合題意故選:C3、B【解析】由余弦函數(shù)的對稱軸為,應用整體代入法求得對稱軸為,即可判斷各項的對稱軸方程是否正確.【詳解】由余弦函數(shù)性質(zhì),有,即,∴當時,有.故選:B4、B【解析】根據(jù)斜二測畫法,原來的高變成了45°方向的線段,且長度是原高的一半,∴原高為AB=2而橫向長度不變,且梯形ABCD是直角梯形,∴DC=故選B5、C【解析】根據(jù)函數(shù)的單調(diào)性與奇偶性對選項中的函數(shù)進行判斷即可【詳解】對于A,f(x)=|x|,是定義域R上的偶函數(shù),∴不滿足條件;對于B,f(x),在定義域(﹣∞,0)∪(0,+∞)上是奇函數(shù),且在每一個區(qū)間上是減函數(shù),不能說函數(shù)在定義域上是減函數(shù),∴不滿足條件;對于C,f(x)=﹣x3,在定義域R上是奇函數(shù),且是減函數(shù),∴滿足題意;對于D,f(x)=x|x|,在定義域R上是奇函數(shù),且是增函數(shù),∴不滿足條件故答案為:C【點睛】本題主要考查函數(shù)的單調(diào)性和奇偶性,意在考查學生對這些知識的掌握水平和分析推理能力.6、D【解析】根據(jù)斜率公式,,選D.7、A【解析】根據(jù)對數(shù)函數(shù)的性質(zhì),確定的范圍,即可得出結(jié)果.【詳解】因為單調(diào)遞增,所以,又,所以.故選A【點睛】本題主要考查對數(shù)的性質(zhì),熟記對數(shù)的性質(zhì),即可比較大小,屬于基礎題型.8、A【解析】與角終邊相同的角為:.當時,即為-300°.故選A9、D【解析】由三角函數(shù)的定義可求得的值.【詳解】由三角函數(shù)的定義可得.故選:D.【點睛】本題考查利用三角函數(shù)的定義求值,考查計算能力,屬于基礎題.10、B【解析】根據(jù)各個函數(shù)的奇偶性、函數(shù)值的符號,判斷函數(shù)的圖象特征,即可得到【詳解】解:①為偶函數(shù),它的圖象關于軸對稱,故第一個圖象即是;②為奇函數(shù),它的圖象關于原點對稱,它在上的值為正數(shù),在上的值為負數(shù),故第三個圖象滿足;③為奇函數(shù),當時,,故第四個圖象滿足;④,為非奇非偶函數(shù),故它的圖象沒有對稱性,故第二個圖象滿足,故選:B【點睛】思路點睛:函數(shù)圖象的辨識可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)從函數(shù)的奇偶性,判斷圖象的對稱性;(4)從函數(shù)的特征點,排除不合要求的圖象.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】函數(shù)是定義在上的奇函數(shù),當時,當時,則,,故答案為.12、6【解析】本題首先可通過題意得出向量以及向量的坐標表示和向量與向量之間的關系,然后通過向量平行的相關性質(zhì)即可得出結(jié)果。【詳解】因為,,且,所以,解得。【點睛】本題考查向量的相關性質(zhì),主要考查向量平行的相關性質(zhì),若向量,,,則有,鍛煉了學生對于向量公式的使用,是簡單題。13、【解析】根據(jù)題意,結(jié)合函數(shù)的性質(zhì),分析可得在區(qū)間上的性質(zhì),即可得答案.【詳解】因為偶函數(shù)在區(qū)間上單調(diào)遞增,且,,所以在區(qū)間上單調(diào)上單調(diào)遞減,且,所以的解集為.故答案為:14、2【解析】先求出,再求的值即可【詳解】解:由題意得,,所以,故答案為:215、【解析】∵扇形的圓心角為,半徑為,∴扇形的面積故答案為16、0【解析】由題意可知,函數(shù)經(jīng)過坐標原點,只需將原點坐標帶入函數(shù)解析式,即可完成求解.【詳解】因為的圖象過原點,所以,即故答案為:0.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)1;(2).【解析】直接利用對數(shù)的運算性質(zhì)求解即可;直接利用三角函數(shù)的誘導公式求解即可【詳解】;.【點睛】本題考查了三角函數(shù)的化簡求值,考查了三角函數(shù)的誘導公式及對數(shù)的運算性質(zhì),是基礎題.18、(1)(2)【解析】(1)由兩邊平方可得,利用同角關系;(2)由(1)可知從而.【詳解】(1)∵.∴,即,(2)由(1)知<0,又∴∴【點睛】本題考查三角函數(shù)化簡求值,涉及同角三角函數(shù)基本關系和整體代入的思想,屬于中檔題19、(1),;(2)見解析;(3).【解析】(1)根據(jù)函數(shù)奇偶性得,,解得的值;最后代入驗證,(2)可舉例比較大小確定單調(diào)性,(3)根據(jù)函數(shù)奇偶性與單調(diào)性將不等式化簡為,再根據(jù)恒成立轉(zhuǎn)化為對應函數(shù)最值問題,最后根據(jù)函數(shù)最值得結(jié)果.【詳解】(1)在上是奇函數(shù),∴,∴,∴,∴,∴,∴,∴,∴,經(jīng)檢驗知:,∴,(2)由(1)可知,在上減函數(shù).(3)對于恒成立,對于恒成立,在上是奇函數(shù),對于恒成立,又在上是減函數(shù),,即對于恒成立,而函數(shù)在上的最大值為2,,∴實數(shù)的取值范圍為【點睛】對于求不等式成立時的參數(shù)范圍問題,在可能的情況下把參數(shù)分離出來,使不等式一端是含有參數(shù)的不等式,另一端是一個區(qū)間上具體的函數(shù),這樣就把問題轉(zhuǎn)化為一端是函數(shù),另一端是參數(shù)的不等式,便于問題的解決.20、(1)單調(diào)遞增,證明見解析;(2).【解析】(1)利用單調(diào)性定義證明的單調(diào)性;(2)根據(jù)奇偶性定義判斷奇偶性,結(jié)合(1)的區(qū)間單調(diào)性確定上的單調(diào)性,進而求的值域,令將問題轉(zhuǎn)化為求參數(shù)范圍.【小問1詳解】在上單調(diào)遞增,證明如下:,且,則,由得:,,所以,即在上的單調(diào)遞增【小問2詳解】由題設,使,又,即是偶函數(shù),結(jié)合(1)知:在單調(diào)遞減,在上單調(diào)遞增,又,所以,即,令,則使,可得,令在單調(diào)遞增,故;所以,即.21、(1);(2)是等腰三角形,其面積為【解析】(1)由結(jié)合正弦面積公式及余弦定理得到,進而得到結(jié)果;(2)由結(jié)合內(nèi)角和定理可得分兩類討論即可.試題解析:(1),由余弦定理得,(2)即或(?。┊敃r,由第(1)問知,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 7179-2025鐵路運輸詞匯貨物運輸
- 企業(yè)員工培訓與素質(zhì)發(fā)展路徑目標制度
- 交通事故處理與理賠制度
- 2026年人力資源管理員工激勵方法模擬試題及答案
- 2026年職業(yè)資格考試復習法律法規(guī)知識考試題庫
- 2026年人力資源規(guī)劃與招聘策略題
- 小便器節(jié)水改造合同
- 廢品回收站點承包合同
- 檢驗科生物安全事故的應急處理制度及流程
- 季度農(nóng)村道路日常養(yǎng)護巡查工作總結(jié)
- 2026年安徽皖信人力資源管理有限公司公開招聘宣城市涇縣某電力外委工作人員筆試備考試題及答案解析
- 骨科患者石膏固定護理
- 人教版(2026)八年級下冊英語UNIT 4 Wonders of Nature講義
- 供熱運行與安全知識課件
- 長期照護師技能考試試卷與答案
- Unit 1 Time to Relax Section A(1a-2d)教學課件 人教新教材2024版八年級英語下冊
- 工程項目居間合同協(xié)議書范本
- 2025年福建省廈門城市職業(yè)學院(廈門開放大學)簡化程序公開招聘事業(yè)單位專業(yè)技術(shù)崗位人員(2025年3月)考試筆試參考題庫附答案解析
- 2025年及未來5年中國對叔丁基苯甲酸市場供需現(xiàn)狀及投資戰(zhàn)略研究報告
- 造價管理限額設計
- 機房空調(diào)安裝協(xié)議書
評論
0/150
提交評論