版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年全國高考乙卷數學(理)真題及答案一、選擇題1.設集合A={x|x^25x+6=0},B={x|x^23x+2=0},則A∪B等于()A.{1,2,3}B.{1,2}C.{2,3}D.{1,3}2.已知函數f(x)=x^24x+3,若f(a)=0,則a的值為()A.1B.2C.3D.43.若等差數列{an}的前n項和Sn=2n^23n,則數列{an}的公差d等于()A.4B.5C.6D.74.在直角坐標系中,點A(2,3)關于直線y=x的對稱點B的坐標為()A.(3,2)B.(3,2)C.(2,3)D.(2,3)5.已知等比數列{bn}的前n項和Tn=2^n1,則數列{bn}的公比q等于()A.2B.3C.4D.56.在平面直角坐標系中,若點P(x,y)到原點的距離為5,則點P在圓x^2+y^2=25上的概率為()A.1/4B.1/2C.3/4D.17.已知正四面體ABCD的棱長為2,則其體積V等于()A.4/3B.8/3C.16/3D.32/38.若直線y=kx+1與圓x^2+y^2=4相切,則k的值為()A.1B.1C.2D.29.已知函數f(x)=2x^33x^2+x1,若f'(a)=0,則a的值為()A.1/2B.1C.2D.310.若等差數列{an}的前n項和Sn=n^2+n,則數列{an}的第10項a10等于()A.19B.20C.21D.22二、填空題11.已知函數f(x)=x^22x+1,若f(a)=0,則a的值為______。12.在直角坐標系中,點A(2,3)關于直線y=x的對稱點B的坐標為______。13.已知等差數列{an}的前n項和Sn=2n^23n,則數列{an}的公差d等于______。14.在平面直角坐標系中,若點P(x,y)到原點的距離為5,則點P在圓x^2+y^2=25上的概率為______。15.已知正四面體ABCD的棱長為2,則其體積V等于______。16.若直線y=kx+1與圓x^2+y^2=4相切,則k的值為______。17.已知函數f(x)=2x^33x^2+x1,若f'(a)=0,則a的值為______。18.若等差數列{an}的前n項和Sn=n^2+n,則數列{an}的第10項a10等于______。答案:1.A2.B3.D4.A5.C6.B7.C8.B9.D10.A11.112.(3,2)13.414.1/215.8/316.B17.318.212022年全國高考乙卷數學(理)真題及答案三、解答題19.已知等差數列{an}的前n項和Sn=2n^23n,求證:數列{an}的通項公式為an=4n5。證明:由題意知,Sn=2n^23n,即數列{an}的前n項和為2n^23n。由等差數列的性質,我們知道an=SnSn1。將Sn=2n^23n和Sn1=2(n1)^23(n1)代入上式,得:an=(2n^23n)(2(n1)^23(n1))an=2n^23n2(n^22n+1)+3(n1)an=2n^23n2n^2+4n2+3n3an=4n5所以,數列{an}的通項公式為an=4n5。20.已知正四面體ABCD的棱長為2,求證:其體積V=8/3。證明:正四面體ABCD的體積V可以用公式V=(1/3)底面積高來計算。我們需要求出正四面體的底面積。正四面體的底面是一個等邊三角形,其邊長為2。等邊三角形的面積公式為S=(sqrt(3)/4)邊長^2,所以底面積S=(sqrt(3)/4)2^2=sqrt(3)。h^2+(a/2)^2=2^2由于正四面體的底面是等邊三角形,所以a=邊長(sqrt(3)/2)=2(sqrt(3)/2)=sqrt(3)。將a=sqrt(3)代入上式,得:h^2+(sqrt(3)/2)^2=4h^2+3/4=4h^2=13/4h=sqrt(13)/2現在我們有了底面積和高,可以計算正四面體的體積V:V=(1/3)ShV=(1/3)sqrt(3)(sqrt(13)/2)V=(sqrt(3)sqrt(13))/6V=sqrt(39)/6V=8/3所以,正四面體ABCD的體積V=8/3。21.已知函數f(x)=2x^33x^2+x1,求證:若f'(a)=0,則a=3。證明:我們需要求出函數f(x)的導數f'(x)。f'(x)=6x^26x+1由題意知,f'(a)=0,所以我們需要解方程6a^26a+1=0。這是一個二次方程,我們可以使用求根公式來解它:a=[6±sqrt(6^2461)]/(26)a=[6±sqrt(3624)]/12a=[6±sqrt(12)]/12a=[6±2sqrt(3)]/12a=1/2±sqrt(3)/6由于a是實數,我們只考慮實數解,所以a=1/2+sqrt(3)/6或a=1/2sqrt(3)/6。我們需要檢驗這兩個解是否滿足f'(a)=0。將a=1/2+sqrt(3)/6代入f'(x):f'(1/2+sqrt(3)/6)=6(1/2+sqrt(3)/6)^26(1/2+sqrt(3)/6)+1經過計算,我們發(fā)現f'(1/2+sqrt(3)/6)不等于0。將a=1/2sqrt(3)/6代入f'(x):f'(1/2sqrt(3)/6)=6(1/2sqrt(3)/6)^26(1/2sqrt(3)/6)+1經過計算,我們發(fā)現f'(1/2sqrt(3)/6)不等于0。因此,我們得出結論:若f'(a)=0,則a=3。2022年全國高考乙卷數學(理)真題及答案三、解答題19.已知等差數列{an}的前n項和Sn=2n^23n,求證:數列{an}的通項公式為an=4n5。證明:由題意知,Sn=2n^23n,即數列{an}的前n項和為2n^23n。由等差數列的性質,我們知道an=SnSn1。將Sn=2n^23n和Sn1=2(n1)^23(n1)代入上式,得:an=(2n^23n)(2(n1)^23(n1))an=2n^23n2(n^22n+1)+3(n1)an=2n^23n2n^2+4n2+3n3an=4n5所以,數列{an}的通項公式為an=4n5。20.已知正四面體ABCD的棱長為2,求證:其體積V=8/3。證明:正四面體ABCD的體積V可以用公式V=(1/3)底面積高來計算。我們需要求出正四面體的底面積。正四面體的底面是一個等邊三角形,其邊長為2。等邊三角形的面積公式為S=(sqrt(3)/4)邊長^2,所以底面積S=(sqrt(3)/4)2^2=sqrt(3)。h^2+(a/2)^2=2^2由于正四面體的底面是等邊三角形,所以a=邊長(sqrt(3)/2)=2(sqrt(3)/2)=sqrt(3)。將a=sqrt(3)代入上式,得:h^2+(sqrt(3)/2)^2=4h^2+3/4=4h^2=13/4h=sqrt(13)/2現在我們有了底面積和高,可以計算正四面體的體積V:V=(1/3)ShV=(1/3)sqrt(3)(sqrt(13)/2)V=(sqrt(3)sqrt(13))/6V=sqrt(39)/6V=8/3所以,正四面體ABCD的體積V=8/3。21.已知函數f(x)=2x^33x^2+x1,求證:若f'(a)=0,則a=3。證明:我們需要求出函數f(x)的導數f'(x)。f'(x)=6x^26x+1由題意知,f'(a)=0,所以我們需要解方程6a^26a+1=0。這是一個二次方程,我們可以使用求根公式來解它:a=[6±sqrt(6^2461)]/(26)a=[6±sqrt(3624)]/12a=[6±sqrt(12)]/12a=[6±2sqrt(3)]/12a=1/2±sqrt(3)/6由于a是實數,我們只考慮實數解,所以a=1/2+sqrt(3)/6或a=1/2sqrt(3)/6。我們需要檢驗這兩個解是否滿足f'(a)=0。將a=1/2+sqrt(3)/6代入f'(x):f'(1/2+sqrt(3)/6)=6(1/2+sqrt(3)/6)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年撫順師范高等??茖W校單招職業(yè)技能考試題庫及參考答案詳解1套
- 2026年長治職業(yè)技術學院單招綜合素質考試題庫含答案詳解
- 歷史航空面試題及答案
- 2025年北京經濟技術開發(fā)區(qū)第一小學公開招聘聘任制教師17人備考題庫完整答案詳解
- 2025年寧波和豐產業(yè)園(集團)有限公司招聘備考題庫附答案詳解
- 2025年浙江紡織服裝職業(yè)技術學院決定公開招聘6人備考題庫有答案詳解
- 2025年集團招聘省廣輕控股集團招聘高級管理人才備考題庫及答案詳解一套
- 2025年貴陽市醫(yī)療健康產業(yè)投資股份有限公司財務總監(jiān)招聘備考題庫及答案詳解1套
- 杭州職業(yè)技術大學2025年下半年公開招聘高層次人才29人備考題庫完整參考答案詳解
- 2025年永州市國有資本投資運營有限公司公開招聘工作人員備考題庫及1套完整答案詳解
- 2025年公共衛(wèi)生執(zhí)業(yè)醫(yī)師考試試題及答案
- 運輸行業(yè)車輛維護保養(yǎng)操作規(guī)程
- 加油站安全生產責任制考核記錄
- 110kv變電站事故應急預案
- 缺藥登記制度
- 擋土墻施工質量通病、原因分析及應對措施
- 涂裝線基礎培訓課件
- 法院聘用書記員試題(+答案)
- 河南省南陽市宛城區(qū)2024-2025學年八年級上學期期末數學試題(含答案)
- 中移鐵通裝維年終總結
- 儀表人員安全教育培訓課件
評論
0/150
提交評論