版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第05講對(duì)數(shù)與對(duì)數(shù)函數(shù)(模擬精練+真題演練)1.(2023·上海金山·上海市金山中學(xué)??寄M預(yù)測(cè))“SKIPIF1<0”是“SKIPIF1<0”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】B【解析】SKIPIF1<0的解集是SKIPIF1<0,反之不成立.所以“SKIPIF1<0”是“SKIPIF1<0”的必要不充分條件.故選:B2.(2023·安徽·校聯(lián)考模擬預(yù)測(cè))19世紀(jì)美國天文學(xué)家西蒙·紐康在翻閱對(duì)數(shù)表時(shí),偶然發(fā)現(xiàn)表中以1開頭的數(shù)出現(xiàn)的頻率更高.約半個(gè)世紀(jì)后,物理學(xué)家本·福特又重新發(fā)現(xiàn)這個(gè)現(xiàn)象,從實(shí)際生活得出的大量數(shù)據(jù)中,以1開頭的數(shù)出現(xiàn)的頻數(shù)約為總數(shù)的三成,并提出本·福特定律,即在大量SKIPIF1<0進(jìn)制隨機(jī)數(shù)據(jù)中,以SKIPIF1<0開頭的數(shù)出現(xiàn)的概率為SKIPIF1<0,如斐波那契數(shù)、階乘數(shù)、素?cái)?shù)等都比較符合該定律.后來常有數(shù)學(xué)愛好者用此定律來檢驗(yàn)?zāi)承┙?jīng)濟(jì)數(shù)據(jù)、選舉數(shù)據(jù)等大數(shù)據(jù)的真實(shí)性.若SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),則SKIPIF1<0的值為(SKIPIF1<0)A.2 B.3 C.4 D.5【答案】B【解析】依題意,得SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0.故選:B.3.(2023·河南·校聯(lián)考模擬預(yù)測(cè))已知SKIPIF1<0,SKIPIF1<0,有以下命題:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.其中正確命題的序號(hào)是(
)A.②③ B.①③ C.①④ D.②④【答案】B【解析】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即:SKIPIF1<0所以SKIPIF1<0,故①正確,②錯(cuò)誤;又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即:SKIPIF1<0,所以SKIPIF1<0,故③正確,④錯(cuò)誤.故選:B.4.(2023·河北石家莊·統(tǒng)考三模)18世紀(jì)數(shù)學(xué)家歐拉研究調(diào)和級(jí)數(shù)得到了以下的結(jié)果:當(dāng)SKIPIF1<0很大時(shí),SKIPIF1<0(常數(shù)SKIPIF1<0).利用以上公式,可以估計(jì)SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由題意SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,故選:C.5.(2023·山西陽泉·統(tǒng)考三模)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0存在零點(diǎn).則實(shí)數(shù)m的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,得函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,因?yàn)楹瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0存在零點(diǎn),所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)m的取值范圍是SKIPIF1<0.故選:B.6.(2023·安徽黃山·統(tǒng)考三模)“SKIPIF1<0”是“函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增”的(
)A.充分不必要條件 B.充要條件C.必要不充分條件 D.既不充分也不必要條件【答案】C【解析】令SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因?yàn)镾KIPIF1<0是SKIPIF1<0上的增函數(shù),則需使SKIPIF1<0是SKIPIF1<0上的增函數(shù)且SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0.因?yàn)镾KIPIF1<0?SKIPIF1<0,故SKIPIF1<0是SKIPIF1<0的必要不充分條件,故選:C.7.(2023·內(nèi)蒙古赤峰·校聯(lián)考三模)已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0有解,則實(shí)數(shù)b的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0,也即SKIPIF1<0時(shí)取等號(hào))∴SKIPIF1<0,故選:C.8.(2023·天津?yàn)I海新·統(tǒng)考三模)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.4 B.6 C.8 D.10【答案】B【解析】由SKIPIF1<0知SKIPIF1<0,結(jié)合SKIPIF1<0,以及換底公式可知,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng),SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,即SKIPIF1<0時(shí)等號(hào)成立,故SKIPIF1<0的最小值為SKIPIF1<0,故選:B.9.(多選題)(2023·全國·高三專題練習(xí))下列運(yùn)算中正確的是(
)A.SKIPIF1<0B.SKIPIF1<0C.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0【答案】BC【解析】SKIPIF1<0,A錯(cuò);SKIPIF1<0,B正確;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,C正確;SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,D錯(cuò).故選:BC.10.(多選題)(2023·全國·高三專題練習(xí))已知SKIPIF1<0,現(xiàn)有下面四個(gè)命題中正確的是(
)A.若SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<0【答案】AB【解析】當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,此時(shí)SKIPIF1<0,所以A正確;當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,所以B正確.故選:AB.11.(多選題)(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖象如下所示.函數(shù)SKIPIF1<0的圖象上有兩個(gè)不同的點(diǎn)SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0在SKIPIF1<0上是奇函數(shù)C.SKIPIF1<0在SKIPIF1<0上是單調(diào)遞增函數(shù) D.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0【答案】BCD【解析】對(duì)于A,由圖像可知,函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,因?yàn)镾KIPIF1<0經(jīng)過SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故A錯(cuò)誤.對(duì)于B,SKIPIF1<0,定義域SKIPIF1<0關(guān)于原點(diǎn)對(duì)稱,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上是奇函數(shù),故B正確.對(duì)于C,對(duì)于SKIPIF1<0,由題意不妨令SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上是單調(diào)遞增函數(shù),故C正確.對(duì)于D,SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立,故D正確.故選:BCD12.(多選題)(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,則下列不等式中成立的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【解析】令SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0、SKIPIF1<0,在同一坐標(biāo)系中分別繪出函數(shù)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的圖像,因?yàn)楹瘮?shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,解方程組SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0與SKIPIF1<0互為反函數(shù),所以由反函數(shù)性質(zhì)知SKIPIF1<0、SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)a=b=1時(shí),等號(hào)成立,所以A、D錯(cuò)誤,B、C正確.故選:BC13.(2023·四川成都·成都七中??寄M預(yù)測(cè))設(shè)SKIPIF1<0定義在SKIPIF1<0上且SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,同理可得SKIPIF1<0.故答案為:SKIPIF1<014.(2023·全國·模擬預(yù)測(cè))寫出一個(gè)同時(shí)具有下列性質(zhì)①②③的函數(shù)SKIPIF1<0______.①SKIPIF1<0;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0(SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù));③函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱.【答案】SKIPIF1<0(答案不唯一)【解析】因?yàn)镾KIPIF1<0,SKIPIF1<0,因此SKIPIF1<0滿足性質(zhì)①;若SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,有SKIPIF1<0,因此SKIPIF1<0滿足性質(zhì)②;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,有SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,有SKIPIF1<0,于是SKIPIF1<0,SKIPIF1<0,即函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱,因此函數(shù)SKIPIF1<0滿足性質(zhì)③,所以具有性質(zhì)①②③的函數(shù)可以為SKIPIF1<0.故答案為:SKIPIF1<015.(2023·天津和平·統(tǒng)考二模)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值為__________.【答案】3【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0,根據(jù)基本不等式有SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0.則SKIPIF1<0,所以SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0.16.(2023·遼寧·校聯(lián)考三模)已知函數(shù)SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是__________.【答案】SKIPIF1<0【解析】因?yàn)楹瘮?shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0為偶函數(shù),設(shè)SKIPIF1<0,而SKIPIF1<0為奇函數(shù),奇函數(shù)SKIPIF1<0偶函數(shù)SKIPIF1<0奇函數(shù),所以函數(shù)SKIPIF1<0為奇函數(shù),關(guān)于原點(diǎn)對(duì)稱,設(shè)SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0即SKIPIF1<0為SKIPIF1<0上的增函數(shù),故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因?yàn)镾KIPIF1<0,所以1SKIPIF1<0,解得SKIPIF1<0,實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<017.(2023·全國·高三專題練習(xí))求值:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0.(5)2log32-log3SKIPIF1<0+log38-SKIPIF1<0;(6)(log2125+log425+log85)·(log52+log254+log1258).(7)SKIPIF1<0lg25+lg2+lgSKIPIF1<0+lg(0.01)-1;(8)(lg2)2+lg2·lg50+lg25;(9)(log32+log92)·(log43+log83);(10)2log32-log3SKIPIF1<0+log38-3log55;【解析】(1)原式SKIPIF1<0SKIPIF1<0.(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(3)原式=SKIPIF1<0.(4)原式=SKIPIF1<0=SKIPIF1<0.(5)原式=2log32-5log32+2+3log32-3=-1.(6)原式SKIPIF1<0SKIPIF1<0SKIPIF1<0.(7)原式=SKIPIF1<0SKIPIF1<0(8)原式=(lg2)2+(1+lg5)lg2+lg52=(lg2+lg5+1)lg2+2lg5=(1+1)lg2+2lg5=2(lg2+lg5)=2.(9)(log32+log92)·(log43+log83)=SKIPIF1<0·SKIPIF1<0=SKIPIF1<0·SKIPIF1<0=SKIPIF1<0·SKIPIF1<0=SKIPIF1<0.(10)2log32-log3SKIPIF1<0+log38-3log55=log322+log3(32×2-5)+log323-3=log3(22×32×2-5×23)-3=log332-3=2-3=-1.18.(2023·全國·高三專題練習(xí))(1)計(jì)算SKIPIF1<0;(2)已知SKIPIF1<0,求實(shí)數(shù)x的值;(3)若SKIPIF1<0,SKIPIF1<0,用a,b,表示SKIPIF1<0.【解析】(1)原式=SKIPIF1<0;(2)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以x=109;(3)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.19.(2023·四川成都·統(tǒng)考二模)已知函數(shù)SKIPIF1<0(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的定義域;(2)當(dāng)函數(shù)SKIPIF1<0的值域?yàn)镽時(shí),求實(shí)數(shù)SKIPIF1<0的取值范圍.【解析】(1)當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,即SKIPIF1<0①,或SKIPIF1<0②,或SKIPIF1<0③,解①得:SKIPIF1<0,解②得:SKIPIF1<0,解③得:SKIPIF1<0,所以定義域?yàn)镾KIPIF1<0;(2)因?yàn)镾KIPIF1<0的值域?yàn)镽,故SKIPIF1<0能取遍所有正數(shù),由絕對(duì)值三角不等式SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,故實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.20.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0有意義時(shí)SKIPIF1<0的取值范圍為SKIPIF1<0,其中SKIPIF1<0為實(shí)數(shù).(1)求SKIPIF1<0的值;(2)寫出函數(shù)SKIPIF1<0的單調(diào)區(qū)間,并求函數(shù)SKIPIF1<0的最大值.【解析】(1)因?yàn)镾KIPIF1<0有意義時(shí)SKIPIF1<0的取值范圍為SKIPIF1<0,所以SKIPIF1<0的解集為SKIPIF1<0,所以SKIPIF1<0和SKIPIF1<0是方程SKIPIF1<0的兩根.由韋達(dá)定理可得SKIPIF1<0,解得SKIPIF1<0.(2)由(1)知,SKIPIF1<0,令SKIPIF1<0,因?yàn)镾KIPIF1<0為增函數(shù),且SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值SKIPIF1<021.(2023·海南省直轄縣級(jí)單位·校聯(lián)考一模)已知函數(shù)SKIPIF1<0為奇函數(shù).(1)求常數(shù)SKIPIF1<0的值;(2)當(dāng)SKIPIF1<0時(shí),判斷SKIPIF1<0的單調(diào)性;(3)若函數(shù)SKIPIF1<0,且SKIPIF1<0在區(qū)間SKIPIF1<0上沒有零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【解析】(1)由SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0顯然不成立,經(jīng)驗(yàn)證:SKIPIF1<0符合題意;所以SKIPIF1<0;(2)SKIPIF1<0單調(diào)遞增由(1)知:SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0單調(diào)遞增.(3)由SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,由(2)知:SKIPIF1<0在SKIPIF1<0上遞增,而SKIPIF1<0在SKIPIF1<0上遞減,所以SKIPIF1<0在SKIPIF1<0上遞減,則SKIPIF1<0.又SKIPIF1<0在區(qū)間SKIPIF1<0上無解,故SKIPIF1<022.(2023·高三課時(shí)練習(xí))已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,值域?yàn)镾KIPIF1<0,且函數(shù)SKIPIF1<0為SKIPIF1<0上的嚴(yán)格減函數(shù),求實(shí)數(shù)a的取值范圍.【解析】由題意有SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,由SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0,又∵已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,∴SKIPIF1<0.SKIPIF1<0為SKIPIF1<0上的嚴(yán)格減函數(shù),函數(shù)SKIPIF1<0在其定義域SKIPIF1<0上為增函數(shù),則函數(shù)SKIPIF1<0在定義域內(nèi)為減函數(shù),有SKIPIF1<0;函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,值域?yàn)镾KIPIF1<0,則有SKIPIF1<0且SKIPIF1<0,說明SKIPIF1<0是方程SKIPIF1<0的兩個(gè)相異實(shí)數(shù)根,且SKIPIF1<0,即方程SKIPIF1<0在區(qū)間(3,+∞)內(nèi)有兩相異實(shí)根.設(shè)SKIPIF1<0,則有SKIPIF1<0,解得SKIPIF1<0,又因?yàn)镾KIPIF1<0,綜上可得:SKIPIF1<0,即實(shí)數(shù)a的取值范圍為SKIPIF1<0.1.(2022·北京·統(tǒng)考高考真題)在北京冬奧會(huì)上,國家速滑館“冰絲帶”使用高效環(huán)保的二氧化碳跨臨界直冷制冰技術(shù),為實(shí)現(xiàn)綠色冬奧作出了貢獻(xiàn).如圖描述了一定條件下二氧化碳所處的狀態(tài)與T和SKIPIF1<0的關(guān)系,其中T表示溫度,單位是K;P表示壓強(qiáng),單位是SKIPIF1<0.下列結(jié)論中正確的是(
)A.當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),二氧化碳處于液態(tài)B.當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),二氧化碳處于氣態(tài)C.當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),二氧化碳處于超臨界狀態(tài)D.當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),二氧化碳處于超臨界狀態(tài)【答案】D【解析】當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)二氧化碳處于固態(tài),故A錯(cuò)誤.當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)二氧化碳處于液態(tài),故B錯(cuò)誤.當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0與4非常接近,故此時(shí)二氧化碳處于固態(tài),對(duì)應(yīng)的是非超臨界狀態(tài),故C錯(cuò)誤.當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),因SKIPIF1<0,故此時(shí)二氧化碳處于超臨界狀態(tài),故D正確.故選:D2.(2022·全國·統(tǒng)考高考真題)設(shè)SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】方法一:構(gòu)造法設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0故選:C.方法二:比較法SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,①SKIPIF1<0,令SKIPIF1<0則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0;②SKIPIF1<0,令SKIPIF1<0則SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0故SKIPIF1<03.(2021·全國·高考真題)青少年視力是社會(huì)普遍關(guān)注的問題,視力情況可借助視力表測(cè)量.通常用五分記錄法和小數(shù)記錄法記錄視力數(shù)據(jù),五分記錄法的數(shù)據(jù)L和小數(shù)記錄表的數(shù)據(jù)V的滿足SKIPIF1<0.已知某同學(xué)視力的五分記錄法的數(shù)據(jù)為4.9,則其視力的小數(shù)記錄法的數(shù)據(jù)為(
)(SKIPIF1<0)A.1.5 B.1.2 C.0.8 D.0.6【答案】C【解析】由SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0.故選:C.4.(2020·海南·高考真題)已知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由SKIPIF1<0得SKIPIF1<0或SKIPIF1<0所以SKIPIF1<0的定義域?yàn)镾KIPIF1<0因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增所以SKIPIF1<0故選:D5.(2020·天津·統(tǒng)考高考真題)設(shè)SKIPIF1<0,則SKIPIF1<0的大小關(guān)系為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:D.6.(2020·全國·統(tǒng)考高考真題)Logistic模型是常用數(shù)學(xué)模型之一,可應(yīng)用于流行病學(xué)領(lǐng)域.有學(xué)者根據(jù)公布數(shù)據(jù)建立了某地區(qū)新冠肺炎累計(jì)確診病例數(shù)I(t)(t的單位:天)的Logistic模型:SKIPIF1<0,其中K為最大確診病例數(shù).當(dāng)I(SKIPIF1<0)=0.95K時(shí),標(biāo)志著已初步遏制疫情,則SKIPIF1<0約為(
)(ln19≈3)A.60 B.63 C.66 D.69【答案】C【解析】SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,解得SKIPIF1<0.故選:C.7.(2020·全國·統(tǒng)考高考真題)設(shè)SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0,所以有SKIPIF1<0,故選:B.8.(2020·全國·統(tǒng)考高考真題)設(shè)函數(shù)SKIPIF1<0,則f(x)(
)A.是偶函數(shù),且在SKIPIF1<0單調(diào)遞增 B.是奇函數(shù),且在SKIPIF1<0單調(diào)遞減C.是偶函數(shù),且在SKIPIF1<0單調(diào)遞增 D.是奇函數(shù),且在SKIPIF1<0單調(diào)遞減【答案】D【解析】由SKIPIF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高中化學(xué)實(shí)驗(yàn)教學(xué)中學(xué)生實(shí)驗(yàn)報(bào)告撰寫能力培養(yǎng)研究教學(xué)研究課題報(bào)告
- 企業(yè)安全課件授課資料內(nèi)容
- 我不跟你走安全課件
- 安全用電課件
- 小學(xué)科學(xué)教學(xué)中科學(xué)游戲與兒童認(rèn)知發(fā)展的課題報(bào)告教學(xué)研究課題報(bào)告
- 幼兒消防安全課件
- 數(shù)學(xué)對(duì)稱圖形在校園建筑中的智能控制系統(tǒng)設(shè)計(jì)課題報(bào)告教學(xué)研究課題報(bào)告
- 2025年短視頻商業(yè)化十年路徑分析報(bào)告
- 論文寫作常用題目及答案
- 壓瘡的護(hù)理內(nèi)容培訓(xùn)
- 整形外科醫(yī)生個(gè)人工作述職報(bào)告
- 水冷精密空調(diào)培訓(xùn)課件
- 大型機(jī)械設(shè)備安全操作培訓(xùn)教材
- 室外給排水管道施工技術(shù)交底范本
- 移動(dòng)電源生產(chǎn)工藝流程
- 動(dòng)靜脈內(nèi)瘺術(shù)后護(hù)理查房規(guī)范
- 核安全事故培訓(xùn)課件
- 碼頭泊位改造試運(yùn)行方案
- 2025年中考英語真題分類匯編(全國)專題04 時(shí)態(tài)、語態(tài)、三大從句及常識(shí)和情景交際(原卷版)
- 【語文】北京市朝陽外語小學(xué)小學(xué)二年級(jí)上冊(cè)期末試卷(含答案)
- 追女生的聊天技巧
評(píng)論
0/150
提交評(píng)論