黑龍江省大慶市林甸縣2023-2024學(xué)年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第1頁
黑龍江省大慶市林甸縣2023-2024學(xué)年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第2頁
黑龍江省大慶市林甸縣2023-2024學(xué)年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第3頁
黑龍江省大慶市林甸縣2023-2024學(xué)年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第4頁
黑龍江省大慶市林甸縣2023-2024學(xué)年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

黑龍江省大慶市林甸縣2023-2024學(xué)年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖1,在△ABC中,AB=BC,AC=m,D,E分別是AB,BC邊的中點(diǎn),點(diǎn)P為AC邊上的一個(gè)動(dòng)點(diǎn),連接PD,PB,PE.設(shè)AP=x,圖1中某條線段長(zhǎng)為y,若表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則這條線段可能是()A.PD B.PB C.PE D.PC2.如圖,是某幾何體的三視圖及相關(guān)數(shù)據(jù),則該幾何體的側(cè)面積是()A.10π B.15π C.20π D.30π3.《九章算術(shù)》中的算籌圖是豎排的,為看圖方便,我們把它改為橫排,如圖1,圖2所示,圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)x,y的系數(shù)與相應(yīng)的常數(shù)項(xiàng).把圖1表示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來,就是.類似地,圖2所示的算籌圖我們可以表述為()A. B. C. D.4.如圖,下列四個(gè)圖形是由已知的四個(gè)立體圖形展開得到的,則對(duì)應(yīng)的標(biāo)號(hào)是A. B. C. D.5.在一組數(shù)據(jù):1,2,4,5中加入一個(gè)新數(shù)3之后,新數(shù)據(jù)與原數(shù)據(jù)相比,下列說法正確的是()A.中位數(shù)不變,方差不變 B.中位數(shù)變大,方差不變C.中位數(shù)變小,方差變小 D.中位數(shù)不變,方差變小6.如圖所示,某公司有三個(gè)住宅區(qū),A、B、C各區(qū)分別住有職工30人,15人,10人,且這三點(diǎn)在一條大道上(A,B,C三點(diǎn)共線),已知AB=100米,BC=200米.為了方便職工上下班,該公司的接送車打算在此間只設(shè)一個(gè)??奎c(diǎn),為使所有的人步行到??奎c(diǎn)的路程之和最小,那么該停靠點(diǎn)的位置應(yīng)設(shè)在()A.點(diǎn)A B.點(diǎn)B C.A,B之間 D.B,C之間7.若x,y的值均擴(kuò)大為原來的3倍,則下列分式的值保持不變的是()A. B. C. D.8.計(jì)算(ab2)3的結(jié)果是()A.a(chǎn)b5 B.a(chǎn)b6 C.a(chǎn)3b5 D.a(chǎn)3b69.有下列四種說法:①半徑確定了,圓就確定了;②直徑是弦;③弦是直徑;④半圓是弧,但弧不一定是半圓.其中,錯(cuò)誤的說法有()A.1種 B.2種 C.3種 D.4種10.我國古代數(shù)學(xué)名著《孫子算經(jīng)》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設(shè)大馬有x匹,小馬有y匹,那么可列方程組為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ACB中,∠ACB=90°,點(diǎn)D為AB的中點(diǎn),將△ACB繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn),當(dāng)CB經(jīng)過點(diǎn)D時(shí)得到△A1CB1.若AC=6,BC=8,則DB1的長(zhǎng)為________.12.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段的長(zhǎng)為________.13.如圖,AB是半圓O的直徑,E是半圓上一點(diǎn),且OE⊥AB,點(diǎn)C為的中點(diǎn),則∠A=__________°.14.如圖,BD是矩形ABCD的一條對(duì)角線,點(diǎn)E,F(xiàn)分別是BD,DC的中點(diǎn).若AB=4,BC=3,則AE+EF的長(zhǎng)為_____.15.如圖,AB是⊙O的切線,B為切點(diǎn),AC經(jīng)過點(diǎn)O,與⊙O分別相交于點(diǎn)D,C,若∠ACB=30°,AB=,則陰影部分的面積是___.16.用換元法解方程時(shí),如果設(shè),那么原方程化成以為“元”的方程是________.17.分解因式:2a4﹣4a2+2=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖①,有兩個(gè)形狀完全相同的直角三角形ABC和EFG疊放在一起(點(diǎn)A與點(diǎn)E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點(diǎn).

如圖②,若整個(gè)△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時(shí),點(diǎn)P從△EFG的頂點(diǎn)G出發(fā),以1cm/s的速度在直角邊GF上向點(diǎn)F運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)F時(shí),點(diǎn)P停止運(yùn)動(dòng),△EFG也隨之停止平移.設(shè)運(yùn)動(dòng)時(shí)間為x(s),F(xiàn)G的延長(zhǎng)線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點(diǎn)P與G、F重合的情況).

(1)當(dāng)x為何值時(shí),OP∥AC;

(2)求y與x之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;

(3)是否存在某一時(shí)刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說明理由.(參考數(shù)據(jù):1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)19.(5分)某手機(jī)經(jīng)銷商計(jì)劃同時(shí)購進(jìn)一批甲、乙兩種型號(hào)的手機(jī),若購進(jìn)2部甲型號(hào)手機(jī)和1部乙型號(hào)手機(jī),共需要資金2800元;若購進(jìn)3部甲型號(hào)手機(jī)和2部乙型號(hào)手機(jī),共需要資金4600元求甲、乙型號(hào)手機(jī)每部進(jìn)價(jià)為多少元?該店計(jì)劃購進(jìn)甲、乙兩種型號(hào)的手機(jī)銷售,預(yù)計(jì)用不多于1.8萬元且不少于1.74萬元的資金購進(jìn)這兩部手機(jī)共20臺(tái),請(qǐng)問有幾種進(jìn)貨方案?請(qǐng)寫出進(jìn)貨方案售出一部甲種型號(hào)手機(jī),利潤(rùn)率為40%,乙型號(hào)手機(jī)的售價(jià)為1280元.為了促銷,公司決定每售出一臺(tái)乙型號(hào)手機(jī),返還顧客現(xiàn)金m元,而甲型號(hào)手機(jī)售價(jià)不變,要使(2)中所有方案獲利相同,求m的值20.(8分)據(jù)報(bào)道,“國際剪刀石頭布協(xié)會(huì)”提議將“剪刀石頭布”作為奧運(yùn)會(huì)比賽項(xiàng)目.某校學(xué)生會(huì)想知道學(xué)生對(duì)這個(gè)提議的了解程度,隨機(jī)抽取部分學(xué)生進(jìn)行了一次問卷調(diào)查,并根據(jù)收集到的信息進(jìn)行了統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:(1)接受問卷調(diào)查的學(xué)生共有___名,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為___;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;(2)若該校共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中對(duì)將“剪刀石頭布”作為奧運(yùn)會(huì)比賽項(xiàng)目的提議達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);(3)“剪刀石頭布”比賽時(shí)雙方每次任意出“剪刀”、“石頭”、“布”這三種手勢(shì)中的一種,規(guī)則為:剪刀勝布,布勝石頭,石頭勝剪刀,若雙方出現(xiàn)相同手勢(shì),則算打平.若小剛和小明兩人只比賽一局,請(qǐng)用樹狀圖或列表法求兩人打平的概率.21.(10分)如圖,B、E、C、F在同一直線上,AB=DE,BE=CF,∠B=∠DEF,求證:AC=DF.22.(10分)定義:若某拋物線上有兩點(diǎn)A、B關(guān)于原點(diǎn)對(duì)稱,則稱該拋物線為“完美拋物線”.已知二次函數(shù)y=ax2-2mx+c(a,m,c均為常數(shù)且ac≠0)是“完美拋物線”:(1)試判斷ac的符號(hào);(2)若c=-1,該二次函數(shù)圖象與y軸交于點(diǎn)C,且S△ABC=1.①求a的值;②當(dāng)該二次函數(shù)圖象與端點(diǎn)為M(-1,1)、N(3,4)的線段有且只有一個(gè)交點(diǎn)時(shí),求m的取值范圍.23.(12分)計(jì)算:+2〡6tan3024.(14分)如圖,AB是⊙O的直徑,點(diǎn)C是弧AB的中點(diǎn),點(diǎn)D是⊙O外一點(diǎn),AD=AB,AD交⊙O于F,BD交⊙O于E,連接CE交AB于G.(1)證明:∠C=∠D;(2)若∠BEF=140°,求∠C的度數(shù);(3)若EF=2,tanB=3,求CE?CG的值.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】觀察可得,點(diǎn)P在線段AC上由A到C的運(yùn)動(dòng)中,線段PE逐漸變短,當(dāng)EP⊥AC時(shí),PE最短,過垂直這個(gè)點(diǎn)后,PE又逐漸變長(zhǎng),當(dāng)AP=m時(shí),點(diǎn)P停止運(yùn)動(dòng),符合圖像的只有線段PE,故選C.點(diǎn)睛:本題考查了動(dòng)點(diǎn)問題的函數(shù)圖象,對(duì)于此類問題來說是典型的數(shù)形結(jié)合,圖象應(yīng)用信息廣泛,通過看圖獲取信息,不僅可以解決生活中的實(shí)際問題,還可以提高分析問題、解決問題的能力.用圖象解決問題時(shí),要理清圖象的含義即會(huì)識(shí)圖.2、B【解析】由三視圖可知此幾何體為圓錐,∴圓錐的底面半徑為3,母線長(zhǎng)為5,∵圓錐的底面周長(zhǎng)等于圓錐的側(cè)面展開扇形的弧長(zhǎng),∴圓錐的底面周長(zhǎng)=圓錐的側(cè)面展開扇形的弧長(zhǎng)=2πr=2π×3=6π,∴圓錐的側(cè)面積=lr=×6π×5=15π,故選B3、A【解析】

根據(jù)圖形,結(jié)合題目所給的運(yùn)算法則列出方程組.【詳解】圖2所示的算籌圖我們可以表述為:.故選A.【點(diǎn)睛】本題考查了由實(shí)際問題抽象出二元一次方程組,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列出方程組.4、B【解析】

根據(jù)常見幾何體的展開圖即可得.【詳解】由展開圖可知第一個(gè)圖形是②正方體的展開圖,第2個(gè)圖形是①圓柱體的展開圖,第3個(gè)圖形是③三棱柱的展開圖,第4個(gè)圖形是④四棱錐的展開圖,故選B【點(diǎn)睛】本題考查的是幾何體,熟練掌握幾何體的展開面是解題的關(guān)鍵.5、D【解析】

根據(jù)中位數(shù)和方差的定義分別計(jì)算出原數(shù)據(jù)和新數(shù)據(jù)的中位數(shù)和方差,從而做出判斷.【詳解】∵原數(shù)據(jù)的中位數(shù)是2+42=3,平均數(shù)為1+2+4+54=3,

∴方差為14×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=52;

∵新數(shù)據(jù)的中位數(shù)為3,平均數(shù)為1+2+3+【點(diǎn)睛】本題考查了中位數(shù)和方差,解題的關(guān)鍵是掌握中位數(shù)和方差的定義.6、A【解析】

此題為數(shù)學(xué)知識(shí)的應(yīng)用,由題意設(shè)一個(gè)??奎c(diǎn),為使所有的人步行到??奎c(diǎn)的路程之和最小,肯定要盡量縮短兩地之間的里程,就用到兩點(diǎn)間線段最短定理.【詳解】解:①以點(diǎn)A為??奎c(diǎn),則所有人的路程的和=15×100+10×300=1(米),②以點(diǎn)B為??奎c(diǎn),則所有人的路程的和=30×100+10×200=5000(米),③以點(diǎn)C為??奎c(diǎn),則所有人的路程的和=30×300+15×200=12000(米),④當(dāng)在AB之間停靠時(shí),設(shè)??奎c(diǎn)到A的距離是m,則(0<m<100),則所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤當(dāng)在BC之間停靠時(shí),設(shè)??奎c(diǎn)到B的距離為n,則(0<n<200),則總路程為30(100+n)+15n+10(200﹣n)=5000+35n>1.∴該停靠點(diǎn)的位置應(yīng)設(shè)在點(diǎn)A;故選A.【點(diǎn)睛】此題為數(shù)學(xué)知識(shí)的應(yīng)用,考查知識(shí)點(diǎn)為兩點(diǎn)之間線段最短.7、D【解析】

根據(jù)分式的基本性質(zhì),x,y的值均擴(kuò)大為原來的3倍,求出每個(gè)式子的結(jié)果,看結(jié)果等于原式的即是答案.【詳解】根據(jù)分式的基本性質(zhì),可知若x,y的值均擴(kuò)大為原來的3倍,A、,錯(cuò)誤;B、,錯(cuò)誤;C、,錯(cuò)誤;D、,正確;故選D.【點(diǎn)睛】本題考查的是分式的基本性質(zhì),即分子分母同乘以一個(gè)不為0的數(shù),分式的值不變.此題比較簡(jiǎn)單,但計(jì)算時(shí)一定要細(xì)心.8、D【解析】試題分析:根據(jù)積的乘方的性質(zhì)進(jìn)行計(jì)算,然后直接選取答案即可.試題解析:(ab2)3=a3?(b2)3=a3b1.故選D.考點(diǎn):冪的乘方與積的乘方.9、B【解析】

根據(jù)弦的定義、弧的定義、以及確定圓的條件即可解決.【詳解】解:圓確定的條件是確定圓心與半徑,是假命題,故此說法錯(cuò)誤;直徑是弦,直徑是圓內(nèi)最長(zhǎng)的弦,是真命題,故此說法正確;弦是直徑,只有過圓心的弦才是直徑,是假命題,故此說法錯(cuò)誤;④半圓是弧,但弧不一定是半圓,圓的任意一條直徑的兩個(gè)端點(diǎn)把圓分成兩條弧,每一條弧都叫半圓,所以半圓是?。劝雸A大的弧是優(yōu)弧,比半圓小的弧是劣弧,不是所有的弧都是半圓,是真命題,故此說法正確.

其中錯(cuò)誤說法的是①③兩個(gè).故選B.【點(diǎn)睛】本題考查弦與直徑的區(qū)別,弧與半圓的區(qū)別,及確定圓的條件,不要將弦與直徑、弧與半圓混淆.10、C【解析】

設(shè)大馬有x匹,小馬有y匹,根據(jù)題意可得等量關(guān)系:①大馬數(shù)+小馬數(shù)=100;②大馬拉瓦數(shù)+小馬拉瓦數(shù)=100,根據(jù)等量關(guān)系列出方程組即可.【詳解】解:設(shè)大馬有x匹,小馬有y匹,由題意得:,故選C.【點(diǎn)睛】此題主要考查了由實(shí)際問題抽象出二元一次方程組,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程組.二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】

根據(jù)勾股定理可以得出AB的長(zhǎng)度,從而得知CD的長(zhǎng)度,再根據(jù)旋轉(zhuǎn)的性質(zhì)可知BC=B1C,從而可以得出答案.【詳解】∵在△ACB中,∠ACB=90°,AC=6,BC=8,∴,∵點(diǎn)D為AB的中點(diǎn),∴,∵將△ACB繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn),當(dāng)CB經(jīng)過點(diǎn)D時(shí)得到△A1CB1.∴CB1=BC=8,∴DB1=CB1-CD=8﹣5=2,故答案為:2.【點(diǎn)睛】本題考查的是勾股定理、直角三角形斜邊中點(diǎn)的性質(zhì)和旋轉(zhuǎn)的性質(zhì),能夠根據(jù)勾股定理求出AB的長(zhǎng)是解題的關(guān)鍵.12、【解析】已知BC=8,AD是中線,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根據(jù)相似三角形的性質(zhì)可得,即可得AC2=CD?BC=4×8=32,解得AC=4.13、22.5【解析】

連接半徑OC,先根據(jù)點(diǎn)C為的中點(diǎn),得∠BOC=45°,再由同圓的半徑相等和等腰三角形的性質(zhì)得:∠A=∠ACO=×45°,可得結(jié)論.【詳解】連接OC,

∵OE⊥AB,

∴∠EOB=90°,

∵點(diǎn)C為的中點(diǎn),

∴∠BOC=45°,

∵OA=OC,

∴∠A=∠ACO=×45°=22.5°,

故答案為:22.5°.【點(diǎn)睛】本題考查了圓周角定理與等腰三角形的性質(zhì).解題的關(guān)鍵是注意掌握數(shù)形結(jié)合思想的應(yīng)用.14、1【解析】

先根據(jù)三角形中位線定理得到的長(zhǎng),再根據(jù)直角三角形斜邊上中線的性質(zhì),即可得到的長(zhǎng),進(jìn)而得出計(jì)算結(jié)果.【詳解】解:∵點(diǎn)E,F(xiàn)分別是的中點(diǎn),∴FE是△BCD的中位線,.又∵E是BD的中點(diǎn),∴Rt△ABD中,,故答案為1.【點(diǎn)睛】本題主要考查了矩形的性質(zhì)以及三角形中位線定理的運(yùn)用,解題時(shí)注意:在直角三角形中,斜邊上的中線等于斜邊的一半;三角形的中位線平行于第三邊,并且等于第三邊的一半.15、﹣【解析】連接OB.∵AB是⊙O切線,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=,∠A=30°,∴OB=1,∴S陰=S△ABO﹣S扇形OBD=×1×﹣=﹣.16、y-【解析】分析:根據(jù)換元法,可得答案.詳解:﹣=1時(shí),如果設(shè)=y,那么原方程化成以y為“元”的方程是y﹣=1.故答案為y﹣=1.點(diǎn)睛:本題考查了換元法解分式方程,把換元為y是解題的關(guān)鍵.17、1(a+1)1(a﹣1)1.【解析】

原式提取公因式,再利用完全平方公式分解即可.【詳解】解:原式=1(a4﹣1a1+1)=1(a1﹣1)1=1(a+1)1(a﹣1)1,故答案為:1(a+1)1(a﹣1)1【點(diǎn)睛】本題主要考查提取公因式與公式法的綜合運(yùn)用,關(guān)鍵要掌握提取公因式之后,根據(jù)多項(xiàng)式的項(xiàng)數(shù)來選擇方法繼續(xù)因式分解,如果多項(xiàng)式是兩項(xiàng),則考慮用平方差公式;如果是三項(xiàng),則考慮用完全平方公式.三、解答題(共7小題,滿分69分)18、(1)1.5s;(2)S=x2+x+3(0<x<3);(3)當(dāng)x=(s)時(shí),四邊形OAHP面積與△ABC面積的比為13:1.【解析】

(1)由于O是EF中點(diǎn),因此當(dāng)P為FG中點(diǎn)時(shí),OP∥EG∥AC,據(jù)此可求出x的值.(2)由于四邊形AHPO形狀不規(guī)則,可根據(jù)三角形AFH和三角形OPF的面積差來得出四邊形AHPO的面積.三角形AHF中,AH的長(zhǎng)可用AF的長(zhǎng)和∠FAH的余弦值求出,同理可求出FH的表達(dá)式(也可用相似三角形來得出AH、FH的長(zhǎng)).三角形OFP中,可過O作OD⊥FP于D,PF的長(zhǎng)易知,而OD的長(zhǎng),可根據(jù)OF的長(zhǎng)和∠FOD的余弦值得出.由此可求得y、x的函數(shù)關(guān)系式.(3)先求出三角形ABC和四邊形OAHP的面積,然后將其代入(2)的函數(shù)式中即可得出x的值.【詳解】解:(1)∵Rt△EFG∽R(shí)t△ABC∴,即,∴FG==3cm∵當(dāng)P為FG的中點(diǎn)時(shí),OP∥EG,EG∥AC∴OP∥AC∴x==×3=1.5(s)∴當(dāng)x為1.5s時(shí),OP∥AC.(2)在Rt△EFG中,由勾股定理得EF=5cm∵EG∥AH∴△EFG∽△AFH∴,∴AH=(x+5),F(xiàn)H=(x+5)過點(diǎn)O作OD⊥FP,垂足為D∵點(diǎn)O為EF中點(diǎn)∴OD=EG=2cm∵FP=3﹣x∴S四邊形OAHP=S△AFH﹣S△OFP=?AH?FH﹣?OD?FP=?(x+5)?(x+5)﹣×2×(3﹣x)=x2+x+3(0<x<3).(3)假設(shè)存在某一時(shí)刻x,使得四邊形OAHP面積與△ABC面積的比為13:1則S四邊形OAHP=×S△ABC∴x2+x+3=××6×8∴6x2+85x﹣250=0解得x1=,x2=﹣(舍去)∵0<x<3∴當(dāng)x=(s)時(shí),四邊形OAHP面積與△ABC面積的比為13:1.【點(diǎn)睛】本題是比較常規(guī)的動(dòng)態(tài)幾何壓軸題,第1小題運(yùn)用相似形的知識(shí)容易解決,第2小題同樣是用相似三角形建立起函數(shù)解析式,要說的是本題中說明了要寫出自變量x的取值范圍,而很多試題往往不寫,要記住自變量x的取值范圍是函數(shù)解析式不可分離的一部分,無論命題者是否交待了都必須寫,第3小題只要根據(jù)函數(shù)解析式列個(gè)方程就能解決.19、(1)甲種型號(hào)手機(jī)每部進(jìn)價(jià)為1000元,乙種型號(hào)手機(jī)每部進(jìn)價(jià)為800元;(2)共有四種方案;(3)當(dāng)m=80時(shí),w始終等于8000,取值與a無關(guān)【解析】

(1)設(shè)甲種型號(hào)手機(jī)每部進(jìn)價(jià)為x元,乙種型號(hào)手機(jī)每部進(jìn)價(jià)為y元根據(jù)題意列方程組求出x、y的值即可;(2)設(shè)購進(jìn)甲種型號(hào)手機(jī)a部,這購進(jìn)乙種型號(hào)手機(jī)(20-a)部,根據(jù)題意列不等式組求出a的取值范圍,根據(jù)a為整數(shù)求出a的值即可明確方案(3)利用利潤(rùn)=單個(gè)利潤(rùn)數(shù)量,用a表示出利潤(rùn)W,當(dāng)利潤(rùn)與a無關(guān)時(shí),(2)中的方案利潤(rùn)相同,求出m值即可;【詳解】(1)設(shè)甲種型號(hào)手機(jī)每部進(jìn)價(jià)為x元,乙種型號(hào)手機(jī)每部進(jìn)價(jià)為y元,,解得,(2)設(shè)購進(jìn)甲種型號(hào)手機(jī)a部,這購進(jìn)乙種型號(hào)手機(jī)(20-a)部,17400≤1000a+800(20-a)≤18000,解得7≤a≤10,∵a為自然數(shù),∴有a為7、8、9、10共四種方案,(3)甲種型號(hào)手機(jī)每部利潤(rùn)為1000×40%=400,w=400a+(1280-800-m)(20-a)=(m-80)a+9600-20m,當(dāng)m=80時(shí),w始終等于8000,取值與a無關(guān).【點(diǎn)睛】本題考查了列二元一次方程組解實(shí)際問題的運(yùn)用,根據(jù)題意找出等量關(guān)系列出方程是解題關(guān)鍵.20、(1)60;90°;統(tǒng)計(jì)圖詳見解析;(2)300;(3).【解析】試題分析:(1)由“了解很少”的人數(shù)除以占的百分比得出學(xué)生總數(shù),求出“基本了解”的學(xué)生占的百分比,乘以360得到結(jié)果,補(bǔ)全條形統(tǒng)計(jì)圖即可;(2)求出“了解”和“基本了解”程度的百分比之和,乘以900即可得到結(jié)果;(3)列表得出所有等可能的情況數(shù),找出兩人打平的情況數(shù),即可求出所求的概率.試題解析:(1)根據(jù)題意得:30÷50%=60(名),“了解”人數(shù)為60﹣(15+30+10)=5(名),“基本了解”占的百分比為×100%=25%,占的角度為25%×360°=90°,補(bǔ)全條形統(tǒng)計(jì)圖如圖所示:(2)根據(jù)題意得:900×=300(人),則估計(jì)該校學(xué)生中對(duì)將“剪刀石頭布”作為奧運(yùn)會(huì)比賽項(xiàng)目的提議達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù)為300人;(3)列表如下:剪石布剪(剪,剪)(石,剪)(布,剪)石(剪,石)(石,石)(布,石)布(剪,布)(石,布)(布,布)所有等可能的情況有9種,其中兩人打平的情況有3種,則P==.考點(diǎn):1、條形統(tǒng)計(jì)圖,2、扇形統(tǒng)計(jì)圖,3、列表法與樹狀圖法21、見解析【解析】

由BE=CF可得BC=EF,即可判定,再利用全等三角形的性質(zhì)證明即可.【詳解】∵BE=CF,∴,即BC=EF,又∵AB=DE,∠B=∠DEF,∴在與中,,∴,∴AC=DF.【點(diǎn)睛】本題主要考查了三角形全等的判定,熟練掌握三角形全等的判定定理是解決本題的關(guān)鍵.22、(1)ac<3;(3)①a=1;②m>或m<.【解析】

(1)設(shè)A

(p,q).則B

(-p,-q),把A、B坐標(biāo)代入解析式可得方程組即可得到結(jié)論;

(3)由c=-1,得到p3=,a>3,且C(3,-1),求得p=±,①根據(jù)三角形的面積公式列方程即可得到結(jié)果;②由①可知:拋物線解析式為y=x3-3mx-1,根據(jù)M(-1,1)、N(3,4).得到這些MN的解析式y(tǒng)=x+(-1≤x≤3),聯(lián)立方程組得到x3-3mx-1=x+,故問題轉(zhuǎn)化為:方程x3-(3m+)x-=3在-1≤x≤3內(nèi)只有一個(gè)解,建立新的二次函數(shù):y=x3-(3m+)x-,根據(jù)題意得到(Ⅰ)若-1≤x1<3且x3>3,(Ⅱ)若x1<-1且-1<x3≤3:列方程組即可得到結(jié)論.【詳解】(1)設(shè)A

(p,q).則B

(-p,-q),

把A、B坐標(biāo)代入解析式可得:,

∴3ap3+3c=3.即p3=?,

∴?≥3,

∵ac≠3,

∴?>3,

∴ac<3;

(3)∵c=-1,

∴p3=,a>3,且C(3,-1),

∴p=±,

①S△ABC=×3×1=1,

∴a=1;

②由①可知:拋物線解析式為y=x3-3mx-1,

∵M(jìn)(-1,1)、N(3,4).

∴MN:y=x+(-1≤x≤3),

依題,只需聯(lián)立在-1≤x≤3內(nèi)只有一個(gè)解即可,

∴x3-3mx-1=x+,

故問題轉(zhuǎn)化為:方程x3-(3m+)x-=3在-1≤x≤3內(nèi)只有一個(gè)解,

建立

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論