大連海洋大學(xué)《數(shù)據(jù)分析與可視化實驗》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
大連海洋大學(xué)《數(shù)據(jù)分析與可視化實驗》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
大連海洋大學(xué)《數(shù)據(jù)分析與可視化實驗》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
大連海洋大學(xué)《數(shù)據(jù)分析與可視化實驗》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
大連海洋大學(xué)《數(shù)據(jù)分析與可視化實驗》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁大連海洋大學(xué)《數(shù)據(jù)分析與可視化實驗》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、數(shù)據(jù)分析中的數(shù)據(jù)融合是將多個數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)要整合來自不同部門的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)融合方法的描述,正確的是:()A.簡單地將數(shù)據(jù)拼接在一起,不處理數(shù)據(jù)格式和語義的差異B.不進(jìn)行數(shù)據(jù)的清洗和轉(zhuǎn)換,直接使用原始數(shù)據(jù)進(jìn)行融合C.運用數(shù)據(jù)清洗、轉(zhuǎn)換和匹配技術(shù),解決數(shù)據(jù)格式、單位和語義的不一致,確保融合后數(shù)據(jù)的準(zhǔn)確性和可用性D.認(rèn)為數(shù)據(jù)融合不會引入誤差和沖突,不進(jìn)行質(zhì)量檢查2、假設(shè)要分析一個醫(yī)療保健系統(tǒng)中的患者病歷數(shù)據(jù),包括診斷結(jié)果、治療方案、康復(fù)情況等,以發(fā)現(xiàn)疾病的趨勢和治療效果的影響因素??紤]到醫(yī)療數(shù)據(jù)的敏感性和隱私性,以下哪個方面需要特別注意?()A.數(shù)據(jù)加密和安全保護(hù)B.快速得出分析結(jié)果C.忽略數(shù)據(jù)的隱私問題D.公開所有數(shù)據(jù)以獲取更多幫助3、在數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量評估是確保數(shù)據(jù)可靠性的重要手段。以下關(guān)于數(shù)據(jù)質(zhì)量評估的說法中,錯誤的是?()A.數(shù)據(jù)質(zhì)量評估可以使用多種指標(biāo),如準(zhǔn)確性、完整性、一致性等B.數(shù)據(jù)質(zhì)量評估可以通過手動檢查和自動化工具相結(jié)合的方式進(jìn)行C.數(shù)據(jù)質(zhì)量評估應(yīng)定期進(jìn)行,及時發(fā)現(xiàn)和解決數(shù)據(jù)質(zhì)量問題D.數(shù)據(jù)質(zhì)量評估只需要在數(shù)據(jù)進(jìn)入數(shù)據(jù)倉庫之前進(jìn)行,之后就不需要再進(jìn)行評估了4、對于一個時間序列數(shù)據(jù),若要預(yù)測未來一段時間的數(shù)值,以下哪種預(yù)測方法通常不依賴歷史數(shù)據(jù)的季節(jié)性特征?()A.移動平均法B.指數(shù)平滑法C.線性回歸法D.季節(jié)性指數(shù)法5、數(shù)據(jù)挖掘在發(fā)現(xiàn)隱藏模式和知識方面發(fā)揮著重要作用。假設(shè)要從大量銷售數(shù)據(jù)中挖掘潛在的客戶購買模式,以下關(guān)于數(shù)據(jù)挖掘技術(shù)選擇的描述,正確的是:()A.僅使用關(guān)聯(lián)規(guī)則挖掘,不考慮其他技術(shù)B.盲目應(yīng)用所有的數(shù)據(jù)挖掘算法,不考慮數(shù)據(jù)特點和業(yè)務(wù)需求C.結(jié)合聚類分析、分類算法和關(guān)聯(lián)規(guī)則挖掘等技術(shù),根據(jù)數(shù)據(jù)特點和問題需求選擇合適的方法D.認(rèn)為數(shù)據(jù)挖掘結(jié)果一定準(zhǔn)確,無需進(jìn)一步驗證和解釋6、在數(shù)據(jù)庫中,若要優(yōu)化查詢語句的執(zhí)行計劃,以下哪個工具或技術(shù)可以提供幫助?()A.索引分析工具B.執(zhí)行計劃查看器C.數(shù)據(jù)庫性能監(jiān)控工具D.以上都是7、在數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量問題的根源可能來自多個方面。以下關(guān)于數(shù)據(jù)質(zhì)量問題根源的說法中,錯誤的是?()A.數(shù)據(jù)質(zhì)量問題可能源于數(shù)據(jù)采集過程中的錯誤和不規(guī)范B.數(shù)據(jù)質(zhì)量問題可能由于數(shù)據(jù)存儲和管理不善導(dǎo)致C.數(shù)據(jù)質(zhì)量問題可能是由于數(shù)據(jù)分析方法不當(dāng)引起的D.數(shù)據(jù)質(zhì)量問題只與數(shù)據(jù)本身有關(guān),與數(shù)據(jù)處理的過程和人員無關(guān)8、在對一個社交網(wǎng)絡(luò)的用戶關(guān)系數(shù)據(jù)進(jìn)行分析,例如好友關(guān)系、群組活動等,以發(fā)現(xiàn)社區(qū)結(jié)構(gòu)和關(guān)鍵節(jié)點。以下哪種算法可能在社區(qū)發(fā)現(xiàn)和關(guān)鍵人物識別中表現(xiàn)出色?()A.PageRank算法B.K-Means算法C.Apriori算法D.以上都不是9、在進(jìn)行數(shù)據(jù)分析時,可能需要對多個數(shù)據(jù)集進(jìn)行合并和整合。假設(shè)你有來自不同部門的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)合并的注意事項,哪一項是最關(guān)鍵的?()A.確保數(shù)據(jù)的格式和字段名稱一致,便于合并B.不考慮數(shù)據(jù)的重復(fù)和沖突,直接合并C.只合并部分重要的數(shù)據(jù)字段,忽略其他D.隨意選擇合并的順序和方式10、數(shù)據(jù)分析中的模型融合可以結(jié)合多個模型的優(yōu)勢提高性能。假設(shè)已經(jīng)建立了多個不同的預(yù)測模型,如線性回歸、決策樹和隨機森林,要將它們?nèi)诤弦垣@得更準(zhǔn)確的預(yù)測結(jié)果。以下哪種模型融合策略在這種情況下更有可能提高預(yù)測精度?()A.簡單平均融合B.加權(quán)平均融合C.基于投票的融合D.以上方法效果相同11、在進(jìn)行數(shù)據(jù)分析時,需要對數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理。標(biāo)準(zhǔn)化處理的主要目的是?()A.消除量綱的影響B(tài).使數(shù)據(jù)符合正態(tài)分布C.減少數(shù)據(jù)的誤差D.提高數(shù)據(jù)的準(zhǔn)確性12、數(shù)據(jù)分析中,數(shù)據(jù)可視化的作用不僅僅是美觀。以下關(guān)于數(shù)據(jù)可視化作用的說法中,錯誤的是?()A.數(shù)據(jù)可視化可以幫助人們更直觀地理解數(shù)據(jù),發(fā)現(xiàn)數(shù)據(jù)中的規(guī)律和趨勢B.數(shù)據(jù)可視化可以提高數(shù)據(jù)分析的效率,減少分析時間和成本C.數(shù)據(jù)可視化可以增強數(shù)據(jù)的說服力和影響力,使分析結(jié)果更容易被接受D.數(shù)據(jù)可視化只是為了讓數(shù)據(jù)分析報告看起來更漂亮,對分析結(jié)果沒有實質(zhì)性的幫助13、數(shù)據(jù)分析中的數(shù)據(jù)探索不僅包括數(shù)值型數(shù)據(jù),也包括類別型數(shù)據(jù)。假設(shè)要分析一個包含職業(yè)信息的類別型數(shù)據(jù)集,以下哪種方法可能有助于了解不同職業(yè)的分布情況?()A.計算每個職業(yè)的頻數(shù)B.繪制職業(yè)的直方圖C.進(jìn)行職業(yè)的聚類分析D.以上方法都可以14、在數(shù)據(jù)挖掘中,若要發(fā)現(xiàn)數(shù)據(jù)中的頻繁項集,以下哪種算法是常用的?()A.FP-Growth算法B.PageRank算法C.LDA算法D.HITS算法15、數(shù)據(jù)分析中的數(shù)據(jù)可視化有助于直觀理解數(shù)據(jù)。假設(shè)要展示不同地區(qū)的銷售額分布情況,以下關(guān)于數(shù)據(jù)可視化選擇的描述,正確的是:()A.使用餅圖,因為它能清晰展示各地區(qū)銷售額占比B.采用折線圖,以反映銷售額隨地區(qū)的變化趨勢C.運用柱狀圖,直觀比較不同地區(qū)銷售額的差異D.選擇箱線圖,全面展示銷售額的分布特征,包括四分位數(shù)和異常值16、在進(jìn)行數(shù)據(jù)可視化時,顏色的選擇有一定的技巧。以下關(guān)于顏色使用的描述,錯誤的是:()A.避免使用過多的顏色,以免造成視覺混亂B.顏色的亮度和飽和度差異越大,對比越明顯C.可以隨意選擇顏色,只要自己覺得美觀就行D.對于重要的數(shù)據(jù),可以使用醒目的顏色突出顯示17、在進(jìn)行數(shù)據(jù)預(yù)處理時,特征工程是重要的環(huán)節(jié)。假設(shè)我們有一個包含房屋屬性(面積、房間數(shù)量、地理位置等)和價格的數(shù)據(jù)集,以下關(guān)于特征工程的描述,正確的是:()A.直接使用原始特征進(jìn)行建模,無需進(jìn)行任何特征轉(zhuǎn)換和構(gòu)建B.對地理位置進(jìn)行獨熱編碼可以有效地將其納入模型C.特征縮放對模型的性能沒有影響,可忽略D.增加一些與房屋價格無關(guān)的特征,能夠提高模型的準(zhǔn)確性18、對于數(shù)據(jù)分析中的數(shù)據(jù)隱私保護(hù),假設(shè)處理的數(shù)據(jù)包含敏感的個人信息。以下哪種方法可能有助于在數(shù)據(jù)分析過程中確保數(shù)據(jù)的安全性和合規(guī)性?()A.數(shù)據(jù)匿名化,去除可識別個人的信息B.加密技術(shù),對數(shù)據(jù)進(jìn)行加密處理C.訪問控制,限制對數(shù)據(jù)的訪問權(quán)限D(zhuǎn).不采取任何保護(hù)措施,直接處理數(shù)據(jù)19、數(shù)據(jù)分析中,數(shù)據(jù)分析方法的選擇應(yīng)根據(jù)具體問題來確定。以下關(guān)于數(shù)據(jù)分析方法選擇的說法中,錯誤的是?()A.不同的數(shù)據(jù)分析方法適用于不同類型的問題和數(shù)據(jù),需要根據(jù)實際情況進(jìn)行選擇B.數(shù)據(jù)分析方法的選擇可以參考前人的研究經(jīng)驗和案例,但不能完全依賴C.選擇數(shù)據(jù)分析方法時,應(yīng)考慮方法的準(zhǔn)確性、效率和可解釋性等因素D.數(shù)據(jù)分析方法一旦確定就不能再進(jìn)行調(diào)整和改變,否則會影響分析結(jié)果的可靠性20、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理是一個重要的步驟。以下關(guān)于數(shù)據(jù)預(yù)處理的目的,錯誤的是?()A.去除數(shù)據(jù)中的噪聲和異常值,提高數(shù)據(jù)的質(zhì)量B.統(tǒng)一數(shù)據(jù)的格式和單位,便于后續(xù)的分析和處理C.對數(shù)據(jù)進(jìn)行編碼和轉(zhuǎn)換,使其適合特定的數(shù)據(jù)分析方法D.增加數(shù)據(jù)的數(shù)量,提高數(shù)據(jù)分析的結(jié)果的可靠性二、簡答題(本大題共3個小題,共15分)1、(本題5分)簡述數(shù)據(jù)挖掘中的推薦系統(tǒng),包括協(xié)同過濾、基于內(nèi)容的推薦等,說明其工作原理和應(yīng)用場景。2、(本題5分)解釋什么是可解釋性人工智能在數(shù)據(jù)分析中的重要性,列舉提高模型可解釋性的方法和技術(shù),并舉例分析。3、(本題5分)在處理地理空間數(shù)據(jù)時,常用的分析方法和技術(shù)有哪些?解釋空間聚類、緩沖區(qū)分析等概念,并舉例說明應(yīng)用。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)某餐飲連鎖品牌收集了各門店的菜品銷售數(shù)據(jù)、食材采購成本、員工工作效率等信息。分析怎樣借助這些數(shù)據(jù)進(jìn)行菜品創(chuàng)新和人員管理優(yōu)化。2、(本題5分)某社交電商平臺記錄了用戶的分享行為、購買轉(zhuǎn)化率、社群活躍度等數(shù)據(jù)。研究社交因素對銷售的影響,優(yōu)化平臺的社交功能和營銷活動。3、(本題5分)某視頻網(wǎng)站擁有用戶的觀看行為數(shù)據(jù),如觀看時長、視頻類型、彈幕互動、分享次數(shù)等。分析不同類型視頻的觀看時長與分享次數(shù)的關(guān)系以及彈幕互動的影響。4、(本題5分)某電信運營商擁有用戶的通話記錄、短信數(shù)據(jù)、流量使用情況等信息。思考如何通過這些數(shù)據(jù)發(fā)現(xiàn)用戶的行為模式,推出更合適的套餐。5、(本題5分)某超市收集了不同季節(jié)、節(jié)假日的商品銷售數(shù)據(jù)和顧客消費習(xí)慣。探討怎樣利用這些數(shù)據(jù)進(jìn)行精準(zhǔn)的庫存管理和促銷活動策劃。四、論述題(本大題共2個小

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論