版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024-2025學(xué)年湖北省十堰市竹溪縣高一下學(xué)期3月月考數(shù)學(xué)檢測試卷一、單選題:本題共8小題,每小題5分,共40分.在每小題給出的選項中,只有一項是符合題目要求的.1.()A. B. C. D.【正確答案】A【分析】利用誘導(dǎo)公式,結(jié)合兩角和的正弦公式,即可求解.【詳解】因為,則,.故選:A.2.已知,,則的值為A. B. C. D.【正確答案】D【詳解】所以,選D.3.將函數(shù)的圖象向左平移個單位長度得到函數(shù)的圖象,下列結(jié)論正確的是()A.是最小正周期為的偶函數(shù) B.是最小正周期為的奇函數(shù)C.在上的最小值為 D.在上單調(diào)遞減【正確答案】AC【分析】化簡得,利用周期公式可判斷B;再由偶函數(shù)定義可判斷A;根據(jù)的范圍求出函數(shù)的值域可判斷C;求出的單調(diào)區(qū)間可判斷D.【詳解】由將函數(shù)的圖象向左平移個單位長度得到函數(shù)的圖象可得,可得其周期為,故B錯誤;,故A正確;因為,所以,所以,故的最小值,故C正確;由得,所以的單調(diào)遞減區(qū)間為,、時的單調(diào)遞減區(qū)間分別為、,D錯誤.故選:AC4.已知,是方程的兩根,且,,則的值為()A. B. C.或 D.或【正確答案】B【分析】由韋達定理得,即,得,再根據(jù)兩角和的正切公式解決即可.【詳解】由題知,,是方程的兩根,所以,即,因為,,所以,,所以,因為,所以,故選:B5.若,則實數(shù)的取值范圍是A. B. C. D.【正確答案】A【分析】根據(jù)題意得再由,從而可得的范圍.【詳解】,,,.故選A.本題主要考查了函數(shù)與方程的思想,首先通過參變分離,將參數(shù)的范圍問題轉(zhuǎn)化為求函數(shù)的值域問題,本題中解題的關(guān)鍵再由結(jié)合三角函數(shù)的范圍可得參數(shù)的范圍,屬于基礎(chǔ)題.6.已知函數(shù),其圖象與直線相鄰兩個交點的距離為,若對恒成立,則的取值范圍是()A. B. C. D.【正確答案】B【分析】根據(jù)余弦型函數(shù)的圖形與性質(zhì)可求得,進而根據(jù)對恒成立列不等式組,求解的范圍,再逐項判斷即可.【詳解】根據(jù)三角函數(shù)的性質(zhì)可知,函數(shù)的最大值為3,又因為的圖象與直線相鄰兩個交點的距離為,所以的最小正周期,則,解得,所以.由對恒成立,得對恒成立,所以,,解得.結(jié)合選項可知,當(dāng)時,,故B正確.故選:B.7.在中,若,則是()A.等腰三角形 B.等邊三角形 C.直角三角形 D.等腰直角三角形【正確答案】A【分析】根據(jù)條件,利用降冪升角公式及余弦的和差角公式,得到,即可求出結(jié)果.【詳解】因為,整理得到,即,又,得到,所以,即,故選:A.8.如圖,在扇形中,,,點P在弧上(點與點不重合),分別在點作扇形所在圓的切線,,且,交于點C,與的延長線交于點D,則的最小值為()A.2 B. C. D.【正確答案】B【分析】連接,.設(shè),,利用直角三角函數(shù)以及切線的性質(zhì)表示出,再利用三角恒等變形公式及基本不等式求最值.【詳解】連接,.設(shè),,在中,,由得,.在中,,,.令,則,且,則,當(dāng)且僅當(dāng),即時取等號.故選:B.二、多選題:本題共3小題,共18分.在每小題給出的選項中,有多項符合題目要求.9.函數(shù),則下列結(jié)論錯誤是(
)A.的最大值為 B.在上單調(diào)遞增C.的圖像關(guān)于直線對稱 D.的圖像關(guān)于點對稱【正確答案】ACD【分析】利用三角恒等變換整理得,結(jié)合正弦函數(shù)性質(zhì)逐項分析判斷.【詳解】由題意可知:,對于選項A:令,解得,當(dāng)時,取到最大值為2,故A錯誤;對于選項B:因為,則,且在內(nèi)單調(diào)遞增,所以在上單調(diào)遞增,故B正確;對于選項CD:,不是最值,所以直線不是的圖像的對稱軸,故C錯誤;的圖像關(guān)于點對稱,故D錯誤;故選:ACD.10.已知函數(shù)的部分圖象如圖所示,則下列說法正確的是()A.B.函數(shù)的圖象關(guān)于點對稱C.將函數(shù)的圖象向右平移個單位,所得函數(shù)為偶函數(shù)D.若,則【正確答案】AD【分析】由函數(shù)圖象可得、,結(jié)合五點法求參數(shù),即可得的解析式,再應(yīng)用代入法判斷對稱點,由圖像平移及正弦函數(shù)的性質(zhì)判斷函數(shù)的奇偶性,利用誘導(dǎo)公式、倍角余弦公式求的值.【詳解】由圖象知:,故A正確,又,即,∴,可得,則,又,故,得:,.又,則有,綜上,.∴,即不是對稱點,B錯誤;,顯然不是偶函數(shù),C錯誤;,則,又,且,D正確.故選:AD.11.已知,其中且,則下列結(jié)論一定正確的是()A. B.C. D.【正確答案】BD【分析】由題意化簡得或,結(jié)合且即可判斷AB;結(jié)合平方關(guān)系以及即可判斷CD.【詳解】因為,其中且,所以,所以或,即或.因為且,所以,所以,B正確,A錯誤;因為,所以,所以,C錯誤;因為,所以,D正確.故選:BD.三、填空題:本題共3小題,每小題5分,共15分.12.已知,則=__________.【正確答案】【分析】用輔助角公式化簡,運用二倍角的余弦公式可以求出的值.【詳解】,.本題考查了輔助角公式和二倍角的余弦公式,考查了余弦的誘導(dǎo)公式,考查了數(shù)學(xué)運算能力.13.已知、、為△的三內(nèi)角,且角為銳角,若,則的最小值為______.【正確答案】【分析】由三角形內(nèi)角的性質(zhì)結(jié)合,可得,由目標(biāo)函數(shù)式并利用基本不等式即可求得其最小值,注意基本不等式的使用條件“一正二定三相等”,其中為銳角,【詳解】、、為△的三內(nèi)角,為銳角,∴故有,即可得∴,當(dāng)且僅當(dāng)時等號成立∴的最小值為故本題考查了由三角形內(nèi)角間的函數(shù)關(guān)系,利用三角恒等變換以及基本不等式求目標(biāo)三角函數(shù)的最值,注意兩角和正切公式、基本不等式(使用條件要成立)的應(yīng)用14.人臉識別就是利用計算機分析人臉視頻或者圖像,并從中提取出有效的識別信息,最終判別人臉對象的身份.在人臉識別中為了檢測樣本之間的相似度主要應(yīng)用距離的測試,常用的測量距離的方式有曼哈頓距離和余弦距離.已知二維空間兩個點、,則其曼哈頓距離為,余弦相似度為,余弦距離為.已知,、、、,若,,則______.【正確答案】【分析】利用定義得到,進而得到,同理可得,,從而利用余弦和角公式得到,故,得到,利用二倍角公式求出,從而求出.【詳解】因為,,所以,因為,所以.因為,所以,因為,則,所以.因為,,所以.又因為,,所以,所以.故新定義問題的方法和技巧:(1)可通過舉例子的方式,將抽象的定義轉(zhuǎn)化為具體的簡單的應(yīng)用,從而加深對信息的理解;(2)可用自己的語言轉(zhuǎn)述新信息所表達的內(nèi)容,如果能清晰描述,那么說明對此信息理解的較為透徹;(3)發(fā)現(xiàn)新信息與所學(xué)知識的聯(lián)系,并從描述中體會信息的本質(zhì)特征與規(guī)律;(4)如果新信息是課本知識的推廣,則要關(guān)注此信息與課本中概念的不同之處,以及什么情況下可以使用書上的概念.四、解答題:本題共5小題,共77分.解答應(yīng)寫出文字說明,證明過程或演算步驟.15.化簡下列各式:(1);(2).【正確答案】(1);(2).【分析】(1)根據(jù)兩角和與差的正弦、余弦公式,以及特殊角的三角函數(shù)值,準(zhǔn)確運算,即可求解;(2)將角表示成為,再利用兩角和與差的正弦公式,準(zhǔn)確運算,即可求解.【詳解】(1)由兩角和與差的正弦、余弦公式,可得:.(2)由16.已知銳角滿足.(1)求的值;(2)求的值.【正確答案】(1)(2)【分析】(1)利用公式,轉(zhuǎn)化為的一元二次方程求解;(2)首先根據(jù)誘導(dǎo)公式化簡,然后轉(zhuǎn)化為關(guān)于齊次式子,然后再上下同時除以,代入求值.【詳解】解:(1)依題化簡可得:或為銳角(2)原式將代入上式,原式本題考查三角函數(shù)恒等變形,意在考查公式的熟練掌握,屬于基礎(chǔ)題型.17.已知函數(shù).(1)求的值;(2)在△ABC中,若,求最大值.【正確答案】(1)1(2)【分析】(1)利用誘導(dǎo)公式、倍角公式與輔助角公式將函數(shù)解析式化簡,再可求的值即可;(2)由A,B為三角形的內(nèi)角,,可求得,從而,展開后利用三角函數(shù)的輔助角公式即可求得的最大值.【小問1詳解】∵,∴.【小問2詳解】由題意可知,,而可得:,即,∴,∵,∴,,∴的最大值為.18.已知函數(shù)f(x)=sin(2ωx+)+sin(2ωx-)+2cos2ωx,其中ω>0,且函數(shù)f(x)的最小正周期為π(1)求ω的值;(2)求f(x)的單調(diào)增區(qū)間(3)若函數(shù)g(x)=f(x)-a在區(qū)間[-,]上有兩個零點,求實數(shù)a的取值范圍.【正確答案】(1)1.(2)[-+kπ,+kπ],k∈Z,(3)見解析.【分析】(1)利用三角函數(shù)恒等變換的應(yīng)用化簡函數(shù)解析式可得,利用三角函數(shù)周期公式可求的值.(2)由正弦函數(shù)單調(diào)性可求的單調(diào)增區(qū)間.(3)作出函數(shù)在上的圖象,從圖象可看出,可求當(dāng)曲線與在∈上有兩個交點時,2,即可得解實數(shù)的取值范圍.【詳解】(1)由三角恒等變換的公式,可得f(x)=sin(2+)+sin(2-)+2=sin2+cos2+sin2-cos2+1+cos2=sin2+cos2+1,又因為T==π,所以.(2)由2kπ-2+2kπ+,k∈Z,解得:-+kπ+kπ,k∈Z,可得f(x)的單調(diào)增區(qū)間為:[-+kπ,+kπ],k∈Z,(3)作出函數(shù)在上的圖象如圖:函數(shù)g(x)有兩個零點,即方程有兩解,亦即曲線與在x∈上有兩個交點,從圖象可看出f(0)=f()=2,f()=+1,所以當(dāng)曲線與在x∈上有兩個交點時,則2,即實數(shù)的取值范圍是.本題主要考查了三角函數(shù)恒等變換的應(yīng)用,三角函數(shù)周期公式,正弦函數(shù)的圖象和性質(zhì),其中解答合理利用三角恒等變換的公式化簡函數(shù)的解析式,熟記三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了計算能力和數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題.19.已知函數(shù)(),的最小正周期為.(1)求的值域;(2)方程在上有且只有一個解,求實數(shù)的取值范圍;(3)是否存在實數(shù)滿足對任意,都存在,使成立.若存在,求的取值范圍;若不存在,說明理由.【正確答案】(1);(2)或;(3)存在,.【分析】(1)利用輔助角公式進行化簡,結(jié)合三角函數(shù)的最值求值域即可.(2)根據(jù)函數(shù)與方程的關(guān)系轉(zhuǎn)化為兩個函數(shù)交點問題,再結(jié)合三角函數(shù)的性質(zhì)求解即可.(3)由(1)可知.實數(shù)滿足對任意,都存在,使得成立等價于成立.換元后,分類討論求出左邊式子的最小值,即可列不等式求解.【詳解】(1)函數(shù)∵的最小正周期為.,∴,∴.那么的解析式則取值范圍是;(2)方程;在上有且有一個解,轉(zhuǎn)化為函數(shù)與函數(shù)在上只有一個交點.∵,∴因為函數(shù)在上增,在上減,且,∴或,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 宣傳與教育培訓(xùn)制度
- 新入職教師培養(yǎng)培訓(xùn)制度
- 培訓(xùn)計劃制度及流程
- 小型培訓(xùn)機構(gòu)老師管理制度
- 高速監(jiān)控室培訓(xùn)制度
- 化工廠新員工培訓(xùn)制度
- 中小學(xué)保健室培訓(xùn)制度
- 培訓(xùn)考勤核算管理制度
- 自我開發(fā)培訓(xùn)制度及流程
- 員工培訓(xùn)機構(gòu)管理制度
- (新教材)2025年人教版八年級上冊歷史期末復(fù)習(xí)全冊知識點梳理
- 招標(biāo)人主體責(zé)任履行指引
- 鋁方通吊頂施工技術(shù)措施方案
- 欠款過戶車輛協(xié)議書
- 2025年江西省高職單招文化統(tǒng)考(語文)
- 解讀(2025年版)輸卵管積水造影診斷中國專家共識
- 創(chuàng)新中心人員管理制度
- (正式版)DB50∕T 1879-2025 《刨豬宴菜品烹飪技術(shù)規(guī)范》
- 高職院校技能大賽指導(dǎo)手冊
- 智齒拔除術(shù)課件
- DG-TJ08-401-2025 公共廁所規(guī)劃和設(shè)計標(biāo)準(zhǔn)
評論
0/150
提交評論