版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2018
UNDERGRADUATEGAMETHEORY
LECTURENOTES
BY
OMERTAMUZ
CaliforniaInstituteofTechnology
2
Acknowledgments
TheselecturenotesarepartiallyadaptedfromOsborneandRubinstein[
29
],Maschler,SolanandZamir[
23
],lecturenotesbyFedericoEchenique,andslidesbyDaronAcemogluandAsuOzdaglar.IamindebtedtoSeoYoung(Silvia)KimandZhuofangLifortheirhelpin?ndingandcorrectingmanyerrors.Anycommentsorsuggestionsarewelcome.
3
Contents
1WhatisaGame?
7
2Finiteextensiveformgameswithperfectinformation
8
2.1Tic-Tac-Toe
8
2.2TheSweetFifteenGame
8
2.3Chess
8
2.4De?nitionof?niteextensiveformgameswithperfectinformation
10
2.5Theultimatumgame
10
2.6Equilibria
11
2.7Thecentipedegame
11
2.8Subgamesandsubgameperfectequilibria
13
2.9Thedollarauction
14
2.10Backwardinduction,Kuhn’sTheoremandaproofofZermelo’sTheorem
15
3Strategicformgames
17
3.1De?nition
17
3.2Nashequilibria
17
3.3Classicalexamples
17
3.4Dominatedstrategies
21
3.5Repeatedeliminationofdominatedstrategies
21
3.6Dominantstrategies
22
3.7MixedequilibriaandNash’sTheorem
23
3.8ProofofNash’sTheorem
24
3.9Bestresponses
25
3.10Tremblinghandperfectequilibria
27
3.10.1Motivatingexample
27
3.10.2De?nitionandresults
27
3.11Correlatedequilibria
29
3.11.1Motivatingexample
29
3.11.2De?nition
29
3.12Zero-sumgames
31
3.12.1Motivatingexample
31
3.12.2De?nitionandresults
31
4Knowledgeandbelief
33
4.1Knowledge
33
4.1.1Thehatsriddle
33
4.1.2Knowledgespaces
33
4.1.3Knowledge
34
4.1.4Knowledgeintermsofself-evidenteventalgebras
35
4.1.5Commonknowledge
37
4
4.1.6Backtothehatsriddle
39
4.2Beliefs
40
4.2.1Amotivatingexample
40
4.2.2Beliefspaces
41
4.3Rationalizability
41
4.4Agreeingtodisagree
42
4.5Notrade
43
4.6Reachingcommonknowledge
44
4.7Bayesiangames
46
5Auctions
47
5.1Classicalauctions
47
5.1.1Firstprice,sealedbidauction
47
5.1.2Secondprice,sealedbidauction
48
5.1.3Englishauction
49
5.1.4Socialwelfare
49
5.2Bayesianauctions
50
5.2.1Secondprice,sealedbidauction
50
5.2.2Firstprice,sealedbidauction
50
5.3Truthfulmechanismsandtherevelationprinciple
53
6Extensiveformgameswithchancemovesandimperfectinformation
55
6.1Motivatingexample:traininspections
55
6.2De?nition
56
6.3Purestrategies,mixedstrategiesandbehavioralstrategies
58
6.4Beliefsystemsandassessments
60
6.5Sequentialrationalityandsequentialequilibria
60
6.6Tremblinghandperfectequilibrium
61
6.7PerfectBayesianequilibrium
61
6.8Cheaptalk
63
6.8.1Example1
63
6.8.2Example2
63
6.8.3Example3
64
6.9TheWalmartgame
65
6.9.1Perfectinformation,oneround
65
6.9.2Perfectinformation,manyrounds
65
6.9.3Imperfectinformation,oneround
65
6.9.4Imperfectinformation,manyrounds
66
7Repeatedgames
69
7.1De?nition
69
7.2Payoffs
69
7.2.1Finitelyrepeatedgames
69
5
7.2.2In?nitelyrepeatedgames:discounting
70
7.2.3In?nitelyrepeatedgames:limitofmeans
70
7.3Folktheorems
72
7.3.1Examples
72
7.3.2Enforceableandfeasiblepayoffs
72
7.4Nashfolktheorems
73
7.5Perfectfolktheorems
75
7.5.1Perfectfolktheoremforlimitingmeans
75
7.5.2Perfectfolktheoremsfordiscounting
76
7.6Finitelyrepeatedgames
82
7.6.1Nashequilibriaandfolktheorems
82
7.6.2PerfectNashequilibriaandfolktheorems
84
8Sociallearning
85
8.1Bayesianhypothesistesting
85
8.2Herdbehavior
87
9Betterresponsedynamicsandpotentialgames
90
9.1Betterresponsedynamics
90
9.2Acongestiongame
90
9.3Potentialgames
91
9.4Theconformismgame
92
10Socialchoice
93
10.1Preferencesandconstitutions
93
10.2TheCondorcetParadox
94
10.3Arrow’sTheorem
94
10.4TheGibbard-SatterthwaiteTheorem
94
6
Disclaimer
Thisanotatextbook.Thesearelecturenotes.
7
1WhatisaGame?
Agameisamathematicalmodelofastrategicinteraction.Wewillbestudyingawidevarietyofgames,butallofthemwillhavethefollowingcommonelements.
?Players.Weoftenthinkofplayersaspeople,butsometimestheymodelbusinesses,teams,politicalparties,countries,etc.
?Choices.Playershavetomakeachoiceormultiplechoicesbetweendifferentactions.Aplayer’sstrategyisherruleforchoosingactions.
?Outcomes.Whentheplayersaredonechoosing,anoutcomeisrealizedandthegameends.Thisoutcomedependsonthechoices.Examplesofoutcomesinclude“player1wins,”“FloragetsadollarandMilesgetstwodollars,”or“anuclearwarstartsandeveryonedies.”
?Preferences.Playershavepreferencesoveroutcomes.Forexample,Floramayprefertheoutcome“FloragetstwodollarsandMilesgetsnothing”overtheoutcome“MilesgetsadollarandFloragetsnothing.”Milesmayhavetheoppositepreference.
Twoimportantfeaturesmakeagamestrategic:?rst,thefactthatoutcomesaredeter-minedbyeveryone’sactions,ratherthanbytheactionsofjustoneplayer.Second,thatplayershavedifferentpreferences.Thiscreatestensions,whichmakegamesinteresting.
Gamesdifferinmanyaspects.
?Timing.Doplayerschooseonce(e.g.,rock-paper-scissors),oragainandagainovertime(e.g.,chess)?Inthelattercase,doesthegameeventuallyend,ordoesitcontinueforever?Dotheychoosesimultaneously,orinturn?
?Observations.Canplayersobserveeachother’schoices?
?Uncertainty.Istheoutcomerandom,orisitadeterministicfunctionoftheplayers’actions?Dosomeplayershaveinformationthattheothersdonot?
Itisimportanttonotethatagamedoesnotspecifywhattheplayersactuallydo,butonlywhattheiroptionsareandwhattheconsequencesare.Unlikeanequationwhich(maybe)hasauniquesolution,theansweringamesismuchlessclearcut.Asolutionconceptisawaytothinkaboutwhattheyplayersmightdecidetodo.Itisnotpartofthedescriptionofthegame,anddifferentsolutionconceptscanyielddifferentpredictionsforthesamegame.
8
2Finiteextensiveformgameswithperfectinformation
Wewillstartbystudyingasimplefamilyofgames,whichincludesmanythatareindeedgamesinthelaypersonmeaningoftheword.Inthesegamesplayerstaketurnsmakingmoves,allplayersobserveallpastmoves,nothingisrandom,andthegameendsaftersome?xednumberofmovesorless.Wewillpresentsomeexamplesandthende?nethisclassofgamesformally.
2.1Tic-Tac-Toe
Twopeopleplaythefollowinggame.Athree-by-threesquaregridisdrawnonapieceofpaper.The?rstplayermarksasquarewithan“x”,thenthesecondplayermarksasquarefromthoseleftwithan“o”,etc.Thewinneristhe?rstplayertohavemarksthatformeitherarow,acolumnoradiagonal.
Doesthe?rstplayerhaveastrategythatassuresthatshewins?Whataboutthesecondplayer?
2.2TheSweetFifteenGame
Twopeopleplaythefollowinggame.Therearecardsonthetablenumberedonethroughnine,facingup,andarrangedinasquare.The?rstplayermarksacardwithan“x”,thenthesecondplayermarksacardfromthoseleftwithan“o”,etc.Thewinneristhe?rstplayertohavethreecards(outofthethreeormorethattheyhavepicked)thatsumtoexactly?fteen.
Doesthe?rstplayerhaveastrategythatassuresthatshewins?Whataboutthesecondplayer?
2.3Chess
Weassumethestudentsarefamiliarwithchess,butthedetailsofthegamewill,infact,notbeimportant.Wewillchoosethefollowing(non-standard)rulesfortheendingofchess:thegameendseitherbythecapturingofaking,inwhichcasethecapturingsidewinsandtheotherloses,orelseinadraw,whichhappenswhenthereaplayerhasnolegalmoves,ormorethan100turnshaveelapsed.
Assuch,thisgameshasthefollowingfeatures:
?Therearetwoplayers,whiteandblack.
?Thereare(atmost)100timesperiods.
?Ineachtimeperiodoneoftheplayerschoosesanaction.Thisactionisobservedbytheotherplayer.
?Thesequenceofactionstakenbytheplayerssofardetermineswhatactionstheactiveplayerisallowedtotake.
9
?Everysequenceofalternatingactionseventuallyendswitheitheradraw,oroneoftheplayerswinning.
Wesaythatwhitecanforceavictoryif,foranymovesthatblackchooses,whitecanchoosemovesthatwillendinitsvictory.Zermeloshowedin1913[
34
]thatinthegameofchess,asdescribedabove,oneofthefollowingthreeholds:
?Whitecanforceavictory.
?Blackcanforceavictory.
?Bothwhiteandblackcanforceadraw.
Wewillprovethislater.
Exercise2.1.Thesametheoremappliestotic-tac-toe.Whichofthethreeholdsthere?
10
2.4De?nitionof?niteextensiveformgameswithperfectinforma-
tion
Ingeneral,anextensiveformgame(withperfectinformation)GisatupleG=(N,A,H,P,{ui}i∈N)where
1.Nisa?nitesetofplayers.
2.Aisa?nitesetofactions.
3.Hisa?nitesetofallowedhistories.ThisisasetofsequencesofelementsofAsuch
thatifh∈Htheneverypre?xofhisalsoinH.eachh=(a1,a2,...,an)isaseriesofallowedlegalmovesinthegame.
4.ThesetofterminalhistoriesZ?HisthesetofsequencesinHthatarenotsubse-quencesofothersinH.ThusZisthesetofhistoriesatwhichthegameends.NotethatwecanspecifyHbyspecifyingZ;HisthesetofsubsequencesofsequencesinZ.
5.PisafunctionfromH\ZtoN.WhenP(h)=ithenitisplayeri’sturntoplayafterhistoryh.
6.Foreachplayeri∈N,uiisafunctionfromtheterminalhistoriestoR.Thenumberui(h)istheutilitythatplayeriassignstotheterminalhistoryh.Playersareassumedtopreferhigherutilities.Notethatthenumbersthemselvesdonotmatter(fornow);onlytheirorderingmatters.
WedenotebyA(h)theactionsavailabletoplayerP(h)afterhistoryh:
A(h)={a∈A:ha∈H}.
Astrategyforplayeriisamapσifromtheset{h∈H:P(h)=i}ofhistorieshatwhichP(h)=itothesetofactionsA.Astrategypro?les={si}i∈Nconstitutesastrategyforeachplayer.Givenastratgypro?leweknowhowplayersaregoingtoplay,andwedenotebyh(s)thepathofplay,i.e.,thehistorythatisrealized.Wealsodenotebyui(s)theutilitythatplayerirecievesunderthishistory.
2.5Theultimatumgame
Intheultimatumgameplayer1makesanoffera∈{0,1,2,3,4}toplayer2.Player2eitheracceptsorrejects.Ifplayer2acceptsthenshereceivesadollarsandplayer1receives4?adollars.If2rejectsthenbothgetnothing.Thisishowthisgamecanbewritteninextensiveform:
1.N={1,2}.
2.A={0,1,2,3,4,a,r}.
11
3.Z={0a,1a,2a,3a,4a,0r,1r,2r,3r,4r}.
4.O={(0,0),(0,4),(1,3),(2,2),(3,1),(4,0)}.Eachpaircorrespondstowhatplayers1re-ceivesandwhatplayer2receives.
5.Forb∈{0,1,2,3,4},u1(ba)=4?b,u2(ba)=bandu1(br)=u2(br)=0.
6.P(Φ)=1,P(0)=P(1)=P(2)=P(3)=P(4)=2.
Astrategyforplayer1isjustachoiceamong{0,1,2,3,4}.Astrategyforplayer2isamapfrom{0,1,2,3,4}to{a,r}:player2’sstrategydescribeswhetherornotsheacceptsorrejectsanygivenoffer.
Remark2.2.Acommonmistakeistothinkthatastrategyofplayer2isjusttochooseamong{a,r}.Butactuallyastrategyisacompletecontingencyplan,whereanactionischosenforeverypossiblehistoryinwhichtheplayerhastomove.
2.6Equilibria
Givenastrategypro?les={si}i∈N,wedenoteby(s?i,s)thestrategypro?leinwhichi’sstrategyischangedfromsitosandtherestremainthesame.
Astrategypro?les*isaNashequilibriumifforalli∈Nandstrategysiofplayeriitholdsthat
i,si)≤ui(s*).
Whensistheequilibriumh(s)isalsoknownastheequilibriumpathassociatedwiths.
Example:intheultimatumgame,considerthestrategypro?leinwhichplayer1offers3,andplayer2accepts3or4andrejects0,1or2.Itiseasytocheckthatthisisanequilibriumpro?le.
2.7Thecentipedegame
Inthecentipedegametherearentimeperiodsand2players.Theplayersalternateinturns,andateachturneachplayercaneitherstop(S)orcontinue(C),exceptatthelastturn,wheretheymuststop.Now,thereisapiggybankwhichinitiallyhasinit2dollars.Inthebeginningofeachturn,thisamountdoubles.Ifaplayerdecidestostop(whichshemustdoinperiodn),sheisawardedthreefourthofwhat’sinthebank,andtheotherplayerisawardedtheremainder.Ifaplayerdecidestocontinue,theamountinthebankdoubles.
Hence,inperiodm,aplayerisawarded3
4·2·2mifshedecidedtostop,andtheotherplayer
4·2·2m.
isgiven1
m=1
m=2
m=3
m=4
m=5
m=6
m=7
m=8
m=9
3
2
12
8
48
32
192
128
768
512
player1
1
6
4
24
16
96
64
384
256
1536
player2
12
Exercise2.3.De?nethecentipedegameformally,forn=4.Howmanystrategiesdoeseachplayerhave?MakesureyouunderstandRemark
2.2
beforeansweringthis.
Exercise2.4.Showthatthestrategypro?leinwhichbothplayersplaySineverytimeperiodisanequilibrium.
Theorem2.5.IneveryNashequilibrium,player1playsSinthe?rstperiod.
Proof.Assumebycontradictionthatplayer1playsCinthe?rstperiodundersomeequi-libriums.Thenthereissomeperiodm>1inwhichSisplayedforthe?rsttimeontheequilibriumpath.ItfollowsthattheplayerwhoplayedCinthepreviousperiodisawarded
period,
·2·2m.Butshecouldhavebeenawarded=·2·2mbyplayingSintheprevious
andthereforesisnotanequilibrium.
13
2.8Subgamesandsubgameperfectequilibria
AsubgameofagameG=(N,A,H,P,{ui}i∈N)isagamethatstartsafteragiven?nitehistoryh∈H.Formally,thesubgameG(h)associatedwithh=(h1,...,hn)∈HisG(h)=(N,A,Hh,P,{ui}i∈N),where
Hh={(a1,a2,...):(h1,...,hn,a1,a2,...)∈H}.
ThefunctionsPanduiareasbefore,justrestrictedtotheappropriatesubdomains.
AstrategysofGcanlikewiseusedtode?neastrategyshofG(h).Wewilldropthehsubscriptswheneverthisdoesnotcreate(toomuch)confusion.
AsubgameperfectequilibriumofGisastrategypro?les*suchthatforeverysubgameG(h)itholdsthats*(moreprecisely,itsrestrictiontoHh)isaNashequilibriumofG(h).WewillproveKuhn’sTheorem,whichstatesthatevery?niteextensiveformgamewithperfectinformationhasasubgameperfectequilibrium.WewillthenshowthatZermelo’sTheoremfollowsfromKuhn’s.
Asanexample,considerthefollowingColdWargameplayedbetweentheUSAandtheUSSR.First,theUSSRdecideswhetherornottostationmissilesinCuba.Ifitdoesnot,thegameendswithutility0forall.Ifitdoes,theUSAhastodecideiftodonothing,inwhichcasetheutilityis1fortheUSSRand-1fortheUSA,ortostartanuclearwar,inwhichcasetheutilityis-1,000,000forall.
Exercise2.6.Findtwoequilibriaforthisgame,oneofwhichissubgameperfect,andonewhichisnot.
Exercise2.7.Findtwoequilibriaoftheultimatumgame,oneofwhichissubgameperfect,andonewhichisnot.
Animportantpropertyof?nitehorizongamesistheonedeviationproperty.Beforeintroducingitwemakethefollowingde?nition.
Letsbeastrategypro?le.Wesaythatsisapro?tabledeviationfromsforplayeriat
historyhifsisastrategyforthesubgameGsuchthatui(s?i,s)>ui(s).
Notethatastrategypro?lehasnopro?tabledeviationsifandonlyifitisasubgameperfectequilibrium.
Theorem2.8(Theonedeviationprinciple).LetG=(N,A,H,P,{ui}i∈N)bea?niteextensiveformgamewithperfectinformation.Letsbeastrategypro?lethatisnotasubgameperfectequilibrium.Therethereexistssomehistoryhandapro?tabledeviations-iforplayeri=P(h)inthesubgameG(h)suchthats-i(k)=si(k)forallk=/h.
Proof.Letsbeastrategypro?lethatisnotasubgameperfectequilibrium.Thenthereisa
subgameG(h)andastrategysforplayeri=P(h)suchthatsisapro?tabledeviationfori
inG(h).Denotes′=(s?i,s),andnotethatui(s′)>ui(s).Lethbeahistorythatismaximal
14
inlengthamongallhistorieswiththisproperty.Letibegivenbys-i(k)=si(k)forallk=/h,
ands-i(h)=s(h).Bythemaximaldepthpropertyofhwehavethatiisstillapro?table
deviation,sinceotherwiseiwouldhaveapro?tabledeviationinsomesubgameofG(h).Wethushavethats-iisapro?tabledeviationforG(h)thatdiffersfromsiinjustonehistory.
2.9Thedollarauction
Twoplayersparticipateinanauctionforadollarbill.Player1actsintheoddperiods,andplayer2intheevenperiods.Bothplayersstartwithazerobid.Ineachperiodtheplayingplayercaneitherstayorquit.Ifshequitstheotherplayergetsthebill,bothpaythehighesttheyhavebidsofar,andthegameends.Ifshestays,shemustbid10centshigherthantheotherplayer’slastbid(exceptinthe?rstperiod,whenshemustbid5cents)andthegamecontinues.Ifoneofthebidsexceeds100dollarsthegameends,thepersonwhomadethehighestbidgetsthedollar,andbothpaythehighesttheyhavebidsofar.Soassumingbothplayersstay,inthe?rstperiodthe?rstplayerbids5cents.Inthesecondperiodthesecondplayerbids15cents.Inthethirdperiodthe?rstplayerbids25cents,etc.
Exercise2.9.Doesthisgamehaveequilibria?Subgameperfectequilibria?
15
2.10Backwardinduction,Kuhn’sTheoremandaproofofZermelo’sTheorem
LetG=(N,A,H,P,{ui}i∈N)beanextensiveformgamewithperfectinformation.RecallthatA(Φ)isthesetofallowedinitialactionsforplayeri=P(Φ).Foreachb∈A(Φ),letsG(b)besomestrategypro?leforthesubgameG(b).Givensomea∈A(Φ),wedenotebysathestrategypro?leforGinwhichplayeri=P(Φ)choosestheinitialactiona,andforeach
actionb∈A(Φ)thesubgameG(b)isplayedaccordingtosG(b).Thatis,s(Φ)=aandfor
everyplayerj,b∈A(Φ)andbh∈H\Z,s(bh)=s(b)(h).
Lemma2.10(BackwardInduction).LetG=(N,A,H,P,{ui}i∈N)bea?niteextensiveformgamewithperfectinformation.Assumethatforeachb∈A(Φ)thesubgameG(b)hasasub-gameperfectequilibriumsG(b).Leti=P(Φ)andletabeamaximizeroverA(Φ)ofui(sG(a)).ThensaisasubgameperfectequilibriumofG.
Proof.Bytheonedeviationprinciple,weonlyneedtocheckthatsadoesnothavedeviationsthatdifferatasinglehistory.Soletsdifferfromsaatasinglehistoryh.
Ifhistheemptyhistorythens=sG(b)forb=si(Φ).Inthiscaseui(sa)>ui(s)=ui(sG(b)),bythede?nitionofaasthemaximizerofui(sG(a)).
Otherwise,hisequaltobh′forsomeb∈A(Φ)andh′∈Hb,andui(s)=ui(s).ButsincesaisasubgameperfectequilibriumwhenrestrictedtoG(b)therearenopro?tabledeviations,
andtheproofiscomplete.
Kuhn[
22
]provedthefollowingtheorem.
Theorem2.11(Kuhn,1953).Every?niteextensiveformgamewithperfectinformationhasasubgameperfectequilibrium.
GivenagameGwithallowedhistoriesH,denotebyl(G)themaximallengthofanyhistoryinH.
ProofofTheorem
2.11.
Weprovetheclaimbyinductiononl(G).Forl(G)=0theclaimisimmediate,sincethetrivialstrategypro?leisanequilibrium,andtherearenopropersubgames.AssumewehaveprovedtheclaimforallgamesGwithl(G)<n.
Letl(G)=n,anddenotei=P(Φ).Foreachb∈A(Φ),letsG(b)besomesubgameperfectequilibriumofG(b).Theseexistbyourinductiveassumption,asl(G(b))<n.
Leta*∈A(Φ)beamaximizerofui(sa*).ThenbytheBackwardInductionLemmasa*isasubgameperfectequilibriumofG,andourproofisconcluded.
GivenKuhn’sTheorem,Zermelo’sTheorem,asstatedbelow,admitsasimpleproof.
Theorem2.12(Zermelo).LetGbea?niteextensiveformgamewithtwoplayersandwhereu1=?u2andu1(h)∈{?1,0,1}.Thenexactlyoneofthefollowingthreehold:
1.Thereexistsastragegysforplayer1suchthatu1(s,s2)=1forallstrategiess2of
player2.
16
2.Thereexistsastragegysforplayer2suchthatu2(s1,s)=1forallstrategiess1of
player2.
3.Thereexiststrategiess,sforplayers1and2suchthatu1(s,s2)≥0andu2(s1,s)≥0
forallstrategiess1,s2ofplayers1and2.
Proof.Lets*beasubgameperfectequilibriumofany?niteextensiveformgamewithtwoplayersandwhereu1=?u2andu1(h)∈{?1,0,1}.Considerthesethreecases.Ifu1(s*)=1thenforanysB
u2(s,s2)≤u2(s*)=?1.
Butu2≥?1,andsou2(s,s2)=?1.Thatis,player1canforcevictorybyplayings.The
sameargumentshowsthatifu2(s*)=1thenblackcanforcevictory.Finally,ifu1(s*)=0thenforanys2
u2(s,s2)≤u2(s*)=0,
sou2(s,s2)iseither0or?1.Bythesameargumentu1(s1,s)iseither0or?1foranys1,
andsowehaveproventheclaim.
17
3Strategicformgames
3.1De?nition
Agameinstrategicform(ornormalform)isatupleG=(N,{Si}i∈N,{ui}i∈N)where
?Nisthesetofplayers.
?Siisthesetofactionsorstrategiesavailabletoplayeri.WedenotebyS=niSithesetofstrategypro?les.
?Thefunctionui:S→Risplayeri’sutility(orpayoff)foreachstrategypro?le.
Wewillassumethatplayershavetheobviouspreferencesoverutility:moreispreferedtoless.WesaythatGis?niteifNis?niteandSis?nite.
3.2Nashequilibria
Givenastrategypro?les,apro?tabledeviationforplayeriisastrategytisuchthat
ui(s?i,ti)>ui(s?i,si).
Astrategypro?lesisaNashequilibriumifnoplayerhasapro?tabledeviation.ThesearealsocalledpureNashequilibria,forreasonsthatwewillseelater.Theyareoftenjustcalledequilibria.
3.3Classicalexamples
?Extensiveformgamewithperfectinformation.LetG=(N,A,H,P,{ui}i∈N)beanextensiveformgamewithperfectinformation,where,insteadoftheusualout-comesandpreferences,eachplayerhasautilityfunctionui:Z→Rthatassignsherautilityateachterminalnode.LetG′bethestrategicformgamegivenbyG′=(N′,{Si}i∈N,{ui}i∈N),where
–N′=N.
–SiisthesetofG-strategiesofplayeri.
–Foreverys∈S,ui(s)istheutilityplayerigetsinGattheterminalnodeatwhichthegamearrivewhenplayersplaythestrategypro?les.
Wehavethusdonenothingmorethanhavingwrittenthesamegameinadifferentform.Note,however,thatnoteverygameinstrategicformcanbewrittenasanextensiveformgamewithperfectinformation.
Exercise3.1.Showthats∈SisaNashequilibriumofGiffitisaNashequilibriumofG′.
18
Notethatadisadvantageofthestrategicformisthatthereisnonaturalwaytode?nesubgamesorsubgameperfectequilibria.
?Matchingpennies.Inthisgame,andinthenextfew,therewillbetwoplayers:arowplayer(R)andacolumnplayer(C).Wewillrepresentthegameasapayoffmatrix,showingforeachstrategypro?les=(sR,sC)thepayoffsuR(s),uC(s)oftherowplayerandthecolumnplayer.
H
T
HT
1,0
0,1
0,1
1,0
Inthisgameeachplayerhastochooseeitherheads(H)ortails(T).Therowplayerwantsthechoicestomatch,whiletherowplayerwantsthemtomismatch.
Exercise3.2.ShowthatmatchingpennieshasnopureNashequilibria.
?Prisoners’dilemma.
Twoprisonersarefacedwithadilemma.Acrimewascommittedintheprison,andtheyaretheonlytwowhocouldhavedoneit.Eachprisonerhastomakeachoicebetweentestifyingagainsttheother(andthusbetrayingtheother)andkeepinghermouthshut.Intheformercasewesaythattheprisonerdefected(i.e.,betrayedtheother),andinthelattershecooperated(withtheotherprisoner,notwiththepolice).
Ifbothcooperate(i.e.,keeptheirmouthsshut),theywillhavetoservetheremainderoftheirsentences,whichare2yearseach.Ifbothdefect(i.e.,agreetotestifyagainsteachother),eachwillserve3years.Ifonedefectsandtheothercooperates,thedefectorwillbereleasedimmediately,andthecooperatorwillserve10yearsforthecrime.
Assumingthataplayer’sutilityisminusthenumberofyearsserved,thepayoffmatrix
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 培訓(xùn)機構(gòu)銷售薪酬制度
- 培訓(xùn)教育工資制度
- 培訓(xùn)班經(jīng)費發(fā)放制度
- 培訓(xùn)中心簽課制度及流程
- 培訓(xùn)班疫情防控規(guī)章制度
- 釀酒人員培訓(xùn)制度
- 商場安全生產(chǎn)培訓(xùn)制度
- 養(yǎng)殖合作社培訓(xùn)制度
- 事業(yè)部培訓(xùn)管理制度
- 普外科人員培訓(xùn)制度
- 電力工程有限公司管理制度制度范本
- 科研倫理與學(xué)術(shù)規(guī)范-課后作業(yè)答案
- 《混凝土結(jié)構(gòu)工程施工規(guī)范》
- 安全防范系統(tǒng)安裝維護員題庫
- mbd技術(shù)體系在航空制造中的應(yīng)用
- 苗木育苗方式
- 通信原理-脈沖編碼調(diào)制(PCM)
- 省直單位公費醫(yī)療管理辦法實施細(xì)則
- 附錄 阿特拉斯空壓機操作手冊
- JJG 693-2011可燃?xì)怏w檢測報警器
- GB/T 39557-2020家用電冰箱換熱器
評論
0/150
提交評論