版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Abstract
Generativeartificialintelligence(GenAI)hasemergedasatransformativeforceinthedigitallandscape,revolutionizingcontentcreationacross
variousmediums,includingtext,images,music,andvideos.This
whitepaperexplorestheGenAIvaluechain,breakingdownitscore
componentsfromhardwareinfrastructureandcloudplatformstodatacollection,foundationalmodels,andapplicationdeployment.EachlayerisessentialtobuildinganddeployingAIsystemsthatdriveinnovation
acrossindustries.Byunderstandingtheselayers,organizationscan
navigatethecomplexitiesofintegratingGenAIintotheiroperations
efficiently,unlockingopportunitiesforautomation,enhanceddecision-making,andprocessoptimization.
Despiteitstransformativepotential,theadoptionofGenAIisencounteringobstacles,includingslowclientexecution,difficultiesinscalingprojects
fromproof-of-concept(POC)toenterprise-levelsolutions,andchallengesinfullycapturingproductivityandrevenuebenefits.Additionally,
integrationwithcomplexlegacysystemsandclienthesitancyare
significantbarrierstowiderGenAIadoption.Incontrast,successful
enterpriseshavereportedenhancedefficiencyandcustomersatisfactionthroughAI-drivenautomationandinnovation.Thispaperoffersa
comprehensiveoverviewoftheGenAIlandscape,providinginsightsintoitscapabilities,valuechain,andreal-worldapplications.
BehindtheCurtain:TheDynamicsofAIContentGeneration3
Introduction
GenAIisrevolutionizingourinteractionwithtechnologybyenabling
machinestoautonomouslygeneratenew,creativecontent.Fromwriting
articlesandcomposingmusicto
creatingvisualartandproducing
code,GenAIcanmimicandaugmenthumancreativity.Thistechnology
isbuiltonadvancedmachine
learning(ML)models,trainedonvastdatasets,whichlearnpatternsand
applythisknowledgetogenerate
originalcontentbasedonuserinput.
TheGenAIecosystemisbeyondthemodels
themselves.Itencompassesacomprehensivevaluechainthatincludeshardware
infrastructure,cloudplatforms,datacollectionandpreparation,modelhubs,andMachine
LearningOperations(MLOps)fordeployment.Eachlayerplaysacriticalroleinensuring
theeffectivedevelopment,deployment,and
scalingofGenAIapplications.ThiswhitepaperexploresthefullspectrumoftheGenAIvalue
chain,detailingtherolesofkeyplayersateachstage,thetechnologicaladvancementsdrivingprogress,andthechallengesbusinessesfacewhenadoptingGenAIsolutions.
Whetheryourelookingtounderstandthe
foundationalcomponentsorseekinginsights
intopracticalapplications,thispaperprovidesaholisticoverviewoftheGenAIlandscape,itspotential,andthefuturedirectionsitmaytake.
TheConceptofGenerativeAI
GenAIisaformofartificialintelligence(AI)thatgeneratesnewcontent,suchastextimages,music,audio,andvideosbasedonuser-
providedprompts.InGenAI,apromptservesasaninputordirectivefromtheuser,
guidingtheAItocreatethedesiredcontent.
Thesemodelsarepre-trainedonlarge
datasets,enablingthemtorecognizepatternsandgenerateoriginalcontentbasedonthe
promptstheyreceive.
Insimpleterms,whenauserprovidesa
promptorasksaquestiontoaGenAImodel,
themodelgeneratesaresponseorcreatestherequestedcontent.Forinstance,ifyouasktheAItowriteashortstoryaboutyourfavoritehero,itwillgenerateauniquestorybasedonyour
request.
BehindtheCurtain:TheDynamicsofAIContentGeneration4
GenerativeAIvaluechainframework
Layers
Overview
KeyPlayers
Infrastructure
Hardware
infrastructure
GenAImodelsrelyonprocessinglargeamountsofdatatoproduceoutputssuchastext,images,orvideos.Trainingthesemodels
involvescomplexcalculationsthatrequirepowerfulhardwaretohandleefficiently.SpecializedprocessorslikeGraphicsProcessingUnits(GPUs),TensorProcessingUnits(TPUs),andcustomchips
aredesignedtoprovidethenecessarycomputationalpower.ThisrobusthardwareensuresthatAImodelscanbetrainedandrunquickly,enablingreal-timeresponsesandmakingadvancedAI
applicationsbothpracticalandeffective..
Leader:NVIDIA,AMD,Intel
andGoogle(TPUsforinternalworkloads),Qualcomm
(mobile)
Otherrelevantplayer:
Cerebras(Wafer-ScaleEngineSambaNovaGraphcore
Cloud
platforms
CloudplatformsareessentialforbuildinganddeployingAImodelsastheyofferscalableandflexibleresources,
suchaspowerfulcomputersandstorage,withouttheneedto
purchaseandmaintainexpensivehardware.ServicesfromAWS,
GoogleCloud,andMicrosoftAzureprovidethenecessarytoolsandsecuritytomanagelargedatasetsandcomplexcomputations.
Theseplatformsareparticularlybeneficialfor
companiesthatlackthebudgetforextensivein-house
infrastructure.However,anorganizationthatcanaffordtosetupandmaintainitsownrobuston-premisessystems,canachieve
similarresults,potentiallysavingcostsinthelongrunwhilehavingmorecontroloverdatasecurityandcompliance.
Leader:AWS,AZURE,GoogleCloudPlatform
Otherrelevantplayers:
Alibaba,TencentandHuawei,IBM
DataandModels
Data
collectionandpreparation
(Annotation)
Itincludescollectingrelevantdata,cleaningittoeliminateerrors,andlabelingitforAItraining.Ensuringtheaccuracyofthedataisessential,asitprovidesastrongfoundationfortheAItoproducereliableresultsandeffectivelyassistusersintheirdailytasks.
RelevantPlayers:ScaleAI,Appen,Amazon
MTurk,StageZero,HiveAI,
SuperAnnotate,Lionbridge,Labelbox,SurgeAI
Foundationmodels
FoundationmodelsarelikeadvancedAItoolsdesignedto
understandandgeneratehuman-likecontent.Theyarebuiltusingdeepneuralnetworksandtrainedonlargedatasetsliketext,
images,andvideostograspgeneralconcepts.Forinstance,
GPT-3gainsinsightsaboutlanguagebyanalyzingalargevolumeofonlinetext.Thesemodelsareflexibleandversatileandcanbetailoredforspecifictasks.
Foundationmodelsarepre-trainedondiversedatasetstoacquirebroadknowledge,whichenablesthemtobefine-tunedoradaptedforspecificapplications,suchascustomerservicechatbotsor
medicalimageanalysis,throughadditionaltrainingortransferlearning.
GPT,DALL-EbyOpenAI,
BERT,T5byGoogle,AmazonTitan,ClaudebyAnthropic,Cohere,StablediffusionbyStabilityAI
Deployment
Modelhubs
andMLOps
ModelhubsandMLOpsstreamlinetheprocessofusingAImodels,makingiteasierforbusinessesanddeveloperstoaccesspowerfultoolsandintegratethemintoapplications.Modelhubsserveas
repositoriesforstoringandsharingthesepre-trainedandfine-
tunedmodels.MLOpsinvolvestheoperationalaspectsofmanagingthemodelslifecycle,fromdevelopmenttodeploymentand
maintenance.
HuggingFace,MLflow,Kubeflow
Application
Atthisstage,therefinedAImodelsfromModelHubsand
MLOpsareintegratedintoreal-worldapplicationstoenhance
automation,decision-making,anduserinteraction.Forexample,
inhealthcare,AImodelscouldassistindiagnosingmedical
conditionsorpersonalizingtreatmentplansbasedonpatientdata.Incustomerservice,chatbotspoweredbyAImodelscanprovideinstantresponsesandimprovetheoverallcustomerexperience.
FinancialinstitutionsmightuseAIforfrauddetectionorportfoliomanagement,optimizingprocessesandreducingrisks.
ChatGPT,Gemini,Dall-E,Midjourney,etc.
Applicationsbuiltonpre-
trainedfoundationalmodelsvarybasedonthecustomersusecaseandspecific
requirements.Often,thesemodelsareintegratedintoexistingapplicationsto
enhancetheirfunctionalityratherthancreatingentirelynewsoftware.
BehindtheCurtain:TheDynamicsofAIContentGeneration5
InfrastructureLayer
TheGenAIhardwarelandscape
featureskeyplayerslikeNVIDIA,AMD,Intel,andGoogle,eachadvancing
AIcapabilitieswiththeirunique
technologies.NVIDIAleadswithits
powerfulGPUshavingthehighest
marketsharewithmorethan80%,
followedbyAMD.Additionally,Intel
integratesAIintoitsCPUsandisa
majorplayerinAIinferencingand
high-performancecomputing,unlikeNVIDIA,whichhasacompetitive
advantageoverAItraining.Besides
this,INTCisdevelopingAIPCs,whichcouldbeatailwinddowntheroad.
GoogleutilizescustomTPUsforits
internalworkloads.InnovativestartupslikeCerebras,withitsWafer-Scale
EnginearedirectlycompetingwithNVIDIAandclaimstohaveoneofthefastestchipsevermade,withimprovedperformancetotrainthelargestAImodels.SambaNova,aisfull-stackGenAIdevelopmentalplatform,offersasetofhardware
solutions,fromchipstotraining
model.Graphcore,knownforits
innovativeIntelligenceProcessingUnits(IPUs)designedtorivalGPUs,isfacingfinancialchallengesandisseekingnewfundingtosustainitsoperations.
CreatingaGenAIplatformleverageshigh-
poweredcomputingandlargedatasets,
whichareaccessibleviacloudservice
providerssuchasAWS,Azure,andGoogle
CloudPlatform.Theseprovidersregularly
updatetheirinfrastructuretoincorporatethelatesttechnologicaladvancementsandofferseamlessintegrationwithfoundationalAI
models.
AWS,oneofthemarketleaders,providesa
widerangeofAIandMLservices,including
SageMakerformodelbuildingandtraining.IthasalsorecentlyintroducedAWSTrainium,acustomchipdesignedforefficientdeep
learningtraining.Azureleveragesitsrobustenterpriseconnectionsandintegrates
AIcapabilitieswithitsAzureMachine
Learningplatform,facilitatingtheseamlessdevelopmentandoperationalizationofAI
models.GoogleCloudPlatformstandsoutwithitsTensorFlowframeworkandcustom-builtTPUs,providingtailoredsolutionssuchasVertexAItosupportcomprehensiveMLworkflowsfromstarttofinish.
OthersignificantplayersincludeAlibaba
Cloud,whichisstrengtheningitsAIofferings
withtheintroductionofthePlatformforAI
(PAI)suite,cateringtotheAsianmarketand
deepeningitsinternationaltiesthrougha
recentpartnershipwithLVMH(aFrenchluxurycompany).IBMprovidesacomprehensive
suiteofenterprise-gradeAIsolutions(WatsonxAI)thatsupportorganizationsindeveloping
customizedAIapplicationsfromtheinitialstagestofulldeployment.
BehindtheCurtain:TheDynamicsofAIContentGeneration6
DataandModelsLayer
Datacollectionandpreparationis
acriticalphaseintheGenAIvalue
chain.Thesestagesinvolvegathering,cleaning,annotating,andcurating
data,toensureitissuitablefor
trainingAImodels.Thekeyplayers
includeScaleAI,whichprovidesdatalabelingservices,convertingrawdataintohigh-qualitytrainingdatausing
ML.Althoughthecompanypreviouslyfacedcompetitionfromin-house
processes,customersfrequentlyreturntoScaleAIafterattemptingthesesolutions.
ScaleAI,valuedatnearly$14billion,recentlysecureda$1billioninvestment.ThecompanyassiststechleaderslikeMicrosoft,Morgan
Stanley,OpenAI,andCohereindeveloping
andimprovingtheirdatasets.Appen,anothermajorplayer,offersAIdatacollectionand
hasdeliveredhigh-qualitydatasetstotop
techgiantslikeMicrosoftandGoogle.Despiteitsearlysuccess,Appen’smarketcaphas
plummetedfromover$4.3billiontoaround$150million,mainlyduetoclientlosses,
executiveturnover,andgrowingcompetition.AmazonMTurkisacrowd-sourcing
platformthatplaysacrucialroleinthedata
preparationprocessforGenAI.Itconnects
businessesandresearcherswithavastpoolofworkerstocompleteHumanIntelligenceTasks(HITs),suchastakingsurveys,objectlabelling,anddataannotation.Otherkeyplayers
workingtoautomatethedatalabellingprocessincludeHiveAI,SuperAnnotate,LionbridgeAI,Labelbox,andSurgeAI.
FoundationmodelsarelargeAIsystemstrainedonalargeamountofdiverse
data.Theyserveasastartingpointfor
datascientists,whousethemtobuildMLapplicationsinsteadofcreatingAIfromthegroundup.Developersusethese
pre-trainedmodelstoquicklybuildnewtoolsthatcanunderstandlanguage,
createtextandimages,andholdnaturalconversations.
BehindtheCurtain:TheDynamicsofAIContentGeneration7
FoundationalModel
ProviderName
OverviewandDevelopments
Text-to-TextModels
GPT
OpenAI
?OpenAIraised$10billioninfundingfrominvestorslikeMicrosoftin2023.
?Thelatestversion,GPT-4-turbo,offersfasterandmorecost-effectiveperfor-mance.
?OpenAIisindiscussionstoraiseseveralbilliondollarsthatwouldvaluethecom-panyat>$100billion.
LLaMA
Meta
MetarecentlyreleasedLlama3.1(anopen-sourcemodel).
Claude2
Anthropic
?IntroducedClaude2thatfocusesonenhancedsafety
?Amazoninvested$4billioninAnthropicin2024.
PaLM2
IntroducedPaLMinApril2022andsincethenGooglehasexpandeditslargelanguagemodelsintomultimodalfields,includingthedevelopmentofPaLM-Eforimageand
robotdata,AudioPaLMforaudio,andMed-PaLMM,whichintegratesmedicalimageswithmedicallanguagedata.
BERT
GoogleBERTintroducedbidirectionalcontextanalysisforimprovedlanguageunder-standing,anditsconceptshaveshapednewermodelslikeT5andMUM,whichhandletaskssuchastranslationandinformationretrieval.
RoBERTa
FacebookAI
ItisanimprovedversionofGoogle’s2018BERTmodel,optimizedforenhancedpre-trainingofNLPsystems.
Bloom
BigScience
Amultilinguallargelanguagemodelthatunderstandsandgeneratestextinmultiplelanguages
Mistral7B
MistralAI
?MistralAIraised$640millionata$6billionvaluationin2024.
?MistralmodelsoutperformotherfoundationalmodelslikeLlama2andofferssixtimesfasterreasoning.
Chinchilla
DeepMind
DeepMind,apartofAlphabet,isfundedthroughAlphabet’sinvestments.
Text-to-ImageModels
DALL-E3
OpenAI
InSeptember2023,OpenAIintegratedDALL-E3intoChatGPTtosupporttext-to-im-age.
StableDiffusionXL
StabilityAI
Raised~$80millioninfundingfromagroupofinvestors,includingGreycroft,CoatueManagement,SoundVentures,LightspeedVenturePartners,SeanParker,EricSchmidt,andPremAkkaraju.
Imagen
GooglehasannouncedthatBardnowsupportsimagegenerationwiththeImagen2model.
MidJourney
MidJourney
MidJourneyhashintedtoforayintoAIhardware.
CodeGenerationModels
CodeLLaMA
Meta
CodeLlamaisanAImodelbuiltontopofLlama2,fine-tunedforgeneratinganddiscussingcode.
Speech-to-Text/Text-to-SpeechModels
Whisper
OpenAI
Aspeech-to-textmodelthatofferstranscriptioninmultiplelanguages,alongwithtranslationfromthoselanguagesintoEnglish.
VALL-E
Microsoft
Atext-to-speechandvoicecloningmodel.
Music/SpeechGenerationModels
Jukebox
OpenAI
Itisaneuralnetwork-basedmusicAIfromOpenAIthatcangenerateaudiofromatextorinstrumentalprompt.
MusicLM
Alphabet
Atext-to-musictool.GooglehasrecentlyreleaseditsupgradedversionnamedMusicFX.
Audiocraft
Meta
AudioCraftconsistsofthreemodels:MusicGen(text-to-music),AudioGen(trainedmodeonpublicsoundeffectslikeadogbarking,carshonking,orfootstepsona
woodenfloor),andEnCodec(forhigher-qualitymusicgeneration).
Polly
Amazon
AcloudservicebyAWSthatconvertstextintospokenaudio,allowingdeveloperstocreatespeech-enabledapplicationsandproducts.
BehindtheCurtain:TheDynamicsofAIContentGeneration8
Deploymentlayer
Thedeploymentlayerinvolves
creatingaGenAIapplicationfortheenduser,whichrequiresaccessto
apre-trainedfoundationalmodel.
Modelhubsprovideacentralized
locationtoaccessandstorethese
models,simplifyingtheprocesswhilesavingtimeandresources.Model
HubslikeHuggingFace,TensorFlow,andGithubstorefoundational
models,managedifferentversions,andofferAPIsandhostingservicestoallowmodelstobeaccessed
programmatically.
Onceamodelisfine-tunedandintegrated
intoanapplication,itcanbemanaged
throughMLOpstools.Theseautomated
proceduresensuresmoothoperation,offeringmodelmonitoringandmanagingtheentire
lifecycle,includingdeployment,monitoring,scaling,andretraining.
IntheGenAIvaluechain,thecreationof
applicationsisthefinalstage,wherethe
valuecreatedbythefoundationalmodels–facilitatedbyhardwareinfrastructure,cloudplatforms,datapreparation,modelhubs,andMLOps–isrealizedasreal-worldproducts
andservices.EnterprisesleverageGenAI
applicationstoautomatevariousprocesses,enhancecustomerexperiences,andinnovateinproductdevelopment.
GenAIisextensivelyemployedacrossvariousindustries,offeringamultitudeofapplications.However,forcompaniestofullyharnessthe
potentialofthiscutting-edgetechnology,itiscrucialtoidentifyspecificusecasesrelevanttotheiroperations.Theimplementationof
GenAIisinherentlycomplexandexpensive.
ManyU.S.companieshavefacedsignificantchallenges,withonlyafewsuccessfully
advancingtheirAIprojectsfromthe
experimentalorpilotstagetofull-scale
production.Thesedifficultiesoftenstemfrompoor-qualitydataandimplementationissues,leadingtoslowerrealizationofbenefitsand
makingitdifficulttoscaleGenAIinitiatives.
Furthermore,AIprojectsrequireextensive
planning,whichhasextendedtheplanning
phaseanddelayedthecommencementof
production-readyprojects.Despitethese
hurdles,anotablenumberofcompanies
havesuccessfullytransitionedfrompilot
phasestofullimplementation,experiencingsignificantproductivitygainsandreceiving
positivecustomerfeedbackfromAI-poweredchatbots.
TheapplicationsofGenAIvarysignificantlyacrossdifferentindustries.Incertainsectors,itisutilizedtoenhancethecustomercare
experiencebydeployingGenAIassistantsthatadeptlyaddressandresolvecustomerinquiries.Conversely,otherenterprises
leverageGenAItooptimizeoperational
efficiencyandprocessoptimization,drivinginnovativesolutionsthatcontributeto
additionalrevenuestreams.
BehindtheCurtain:TheDynamicsofAIContentGeneration9
Deploymentlayer
Thedeploymentlayerinvolves
creatingaGenAIapplicationfortheenduser,whichrequiresaccessto
apre-trainedfoundationalmodel.
Modelhubsprovideacentralized
locationtoaccessandstorethese
models,simplifyingtheprocesswhilesavingtimeandresources.Model
HubslikeHuggingFace,TensorFlow,andGithubstorefoundational
models,managedifferentversions,andofferAPIsandhostingservicestoallowmodelstobeaccessed
programmatically.
Onceamodelisfine-tunedandintegrated
intoanapplication,itcanbemanaged
throughMLOpstools.Theseautomated
proceduresensuresmoothoperation,offeringmodelmonitoringandmanagingtheentire
lifecycle,includingdeployment,monitoring,scaling,andretraining.
IntheGenAIvaluechain,thecreationof
applicationsisthefinalstage,wherethe
valuecreatedbythefoundationalmodels–facilitatedbyhardwareinfrastructure,cloudplatforms,datapreparation,modelhubs,andMLOps–isrealizedasreal-worldproducts
andservices.EnterprisesleverageGenAI
applicationstoautomatevariousprocesses,enhancecustomerexperiences,andinnovateinproductdevelopment.
GenAIisextensivelyemployedacrossvariousindustries,offeringamultitudeofapplications.However,forcompaniestofullyharnessthe
potentialofthiscutting-edgetechnology,itiscrucialtoidentifyspecificusecasesrelevanttotheiroperations.Theimplementationof
GenAIisinherentlycomplexandexpensive.
ManyU.S.companieshavefacedsignificantchallenges,withonlyafewsuccessfully
advancingtheirAIprojectsfromthe
experimentalorpilotstagetofull-scale
production.Thesedifficultiesoftenstemfrompoor-qualitydataandimplementationissues,leadingtoslowerrealizationofbenefitsand
makingitdifficulttoscaleGenAIinitiatives.
Furthermore,AIprojectsrequireextensive
planning,whichhasextendedtheplanning
phaseanddelayedthecommencementof
production-readyprojects.Despitethese
hurdles,anotablenumberofcompanies
havesuccessfullytransitionedfrompilot
phasestofullimplementation,experiencingsignificantproductivitygainsandreceiving
positivecustomerfeedbackfromAI-poweredchatbots.
TheapplicationsofGenAIvarysignificantlyacrossdifferentindustries.Incertainsectors,itisutilizedtoenhancethecustomercare
experiencebydeployingGenAIassistantsthatadeptlyaddressandresolvecustomerinquiries.Conversely,otherenterprises
leverageGenAItooptimizeoperational
efficiencyandprocessoptimization,drivinginnovativesolutionsthatcontributeto
additionalrevenuestreams.
BehindtheCurtain:TheDynamicsofAIContentGeneration10
Conclusion
GenAIrepresentsapivotaladvancementinAI,capableofreshapingindustries
byautomatingtasks,enhancingcustomerexperiences,andfosteringinnovation.Asoutlinedinthiswhitepaper,theGenAIvaluechainconsistsofmultiple
interconnectedlayers–frompowerfulhardwareandscalablecloudplatformstorobustdatapreparationandadvancedfoundationalmodels.
DespitetheexcitementsurroundingAI,manycompaniesstruggletorealizetangiblebenefitsduetohighcostsandtechnicalhurdles.Atthedeploymentstage,AIplaysonlyasmallrole,makingitdifficulttoachieveimmediateresults.ThishighlightstheneedforadeeperunderstandingoftheGenAIvaluechainandastrategicapproachtoadoption.Nonetheless,thefutureofGenAIispromising.Asmodelsbecomemoresophisticatedandpersonalized,andasthevaluechaincontinuestoevolve,wecanexpectnewapplicationsandusecasestoemerge,furtherpushingtheboundariesofwhatispossiblewithAI.BusinessesthatsuccessfullynavigatethecomplexitiesofGenAIadoptionwillbewell-positionedtogainacompetitiveedgeinanincreasinglyAI-drivenworld.
ThefutureofGenAIisnotsolelyaboutthetechnologyitself,butalsoabouthow
effectivelyitisintegratedintobroaderbusinessstrategiestoshapethenexteraofdigitaltransformation.
AsGenAIcontinuestoevolve,itsimpactisbecomingincreasinglyapparent
acrossvariousindustriesandsectors,makingitatopictoovasttofullycoverin
asinglewhitepaper.Thispaperservesasthefirstinaseriesthatwilldelveinto
differentaspectsoftheGenAIvaluechain.FutureepisodesoftheGenAIserieswillexplorethesetopicsingreaterdepth,providingacomprehensiveunderstandingoftheGenAImarket,includingapplicationsacrossindustries,technological
advancements,andupdatesonMCA,PE,andVCinvestments.
Staytunedforthenextepisode,whereIwillfurtherunpacktheintricaciesofthistransformativefield.
BehindtheCurtain:TheDynamicsofAIContentGeneration''
References
?
/blog/how-real-world-enterprises-are-leveraging-generative-ai#:
~:-text=At%20Databricks%2C%20we’ve%20seen,or%20retail%20and%20consumer%20goods.
?
/blog/industries-disrupted-by-ai/
?
/transform/where-gen-ai-is-impacting-industries-in-2024
?
/publications/2024/from-potential-to-profit-with-genai
?
https://swisscognitive.ch/2023/03/21/the-power-of-generative-ai-exploring-its-impact-applica
-tions-limitations-and-future-redefining-business-performance-with-generative-ai/
?
/article/generative-ai-a-creative-new-world/
?
/art
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026中國地質(zhì)調(diào)查局煙臺海岸帶地質(zhì)調(diào)查中心招聘工作人員28人備考題庫(第一批)及參考答案詳解一套
- 2026天津華北地質(zhì)勘查局及所屬事業(yè)單位招聘高層次人才8人備考題庫帶答案詳解(滿分必刷)
- 2026山東菏澤行健高級中學(xué)教師招聘備考題庫含答案
- 2026年池州石臺縣消防救援局招聘2名備考題庫含答案
- 2026陜西能源職業(yè)技術(shù)學(xué)院博士招聘40人備考題庫含答案
- 2026上半年安徽事業(yè)單位聯(lián)考合肥高新區(qū)管委會招聘45人備考題庫附答案詳解(培優(yōu)a卷)
- 2026四川水發(fā)能源開發(fā)有限公司招聘4人備考題庫帶答案詳解(綜合題)
- 2026南平建陽旭輝實驗學(xué)校招聘教師2人備考題庫附答案
- 2025年供應(yīng)鏈項目管理能力評估試題
- 2026年小學(xué)語文文學(xué)鑒賞能力試題及答案
- 紹興興欣新材料股份有限公司新增3000ta焦磷酸哌嗪、4000ta聚氨酯發(fā)泡催化劑、5000taN-β-羥乙基乙二胺、500ta無水哌嗪項目及全廠資源循環(huán)利用技改提升項目(一期)環(huán)境影響報告書
- 千古奇文《初心》原文
- 失禁相關(guān)性皮炎與壓力性損傷的區(qū)分鑒別
- 鋁合金門窗設(shè)計說明
- MUX-2MD繼電保護(hù)信號數(shù)字復(fù)接接口裝置說明書
- 食品行業(yè)倉庫盤點制度及流程
- 北京市通州區(qū)2023-2024學(xué)年九年級上學(xué)期期末考試語文試卷(含答案)
- 2024四川綿陽涪城區(qū)事業(yè)單位選調(diào)(聘)筆試管理單位遴選500模擬題附帶答案詳解
- 發(fā)貨組年終總結(jié)
- 《化工制圖》試題及參考答案 (C卷)
- 新疆維吾爾自治區(qū)伊犁哈薩克自治州2023-2024學(xué)年八年級下學(xué)期期中數(shù)學(xué)試題
評論
0/150
提交評論