SG Analytics:2024人工智能內(nèi)容生成動向揭秘白皮書:探索其在數(shù)字化轉(zhuǎn)型中的關(guān)鍵作用與行業(yè)應(yīng)用 BEHIND THE CURTAIN -The Dynamics of Al Content Generation_第1頁
SG Analytics:2024人工智能內(nèi)容生成動向揭秘白皮書:探索其在數(shù)字化轉(zhuǎn)型中的關(guān)鍵作用與行業(yè)應(yīng)用 BEHIND THE CURTAIN -The Dynamics of Al Content Generation_第2頁
SG Analytics:2024人工智能內(nèi)容生成動向揭秘白皮書:探索其在數(shù)字化轉(zhuǎn)型中的關(guān)鍵作用與行業(yè)應(yīng)用 BEHIND THE CURTAIN -The Dynamics of Al Content Generation_第3頁
SG Analytics:2024人工智能內(nèi)容生成動向揭秘白皮書:探索其在數(shù)字化轉(zhuǎn)型中的關(guān)鍵作用與行業(yè)應(yīng)用 BEHIND THE CURTAIN -The Dynamics of Al Content Generation_第4頁
SG Analytics:2024人工智能內(nèi)容生成動向揭秘白皮書:探索其在數(shù)字化轉(zhuǎn)型中的關(guān)鍵作用與行業(yè)應(yīng)用 BEHIND THE CURTAIN -The Dynamics of Al Content Generation_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

Abstract

Generativeartificialintelligence(GenAI)hasemergedasatransformativeforceinthedigitallandscape,revolutionizingcontentcreationacross

variousmediums,includingtext,images,music,andvideos.This

whitepaperexplorestheGenAIvaluechain,breakingdownitscore

componentsfromhardwareinfrastructureandcloudplatformstodatacollection,foundationalmodels,andapplicationdeployment.EachlayerisessentialtobuildinganddeployingAIsystemsthatdriveinnovation

acrossindustries.Byunderstandingtheselayers,organizationscan

navigatethecomplexitiesofintegratingGenAIintotheiroperations

efficiently,unlockingopportunitiesforautomation,enhanceddecision-making,andprocessoptimization.

Despiteitstransformativepotential,theadoptionofGenAIisencounteringobstacles,includingslowclientexecution,difficultiesinscalingprojects

fromproof-of-concept(POC)toenterprise-levelsolutions,andchallengesinfullycapturingproductivityandrevenuebenefits.Additionally,

integrationwithcomplexlegacysystemsandclienthesitancyare

significantbarrierstowiderGenAIadoption.Incontrast,successful

enterpriseshavereportedenhancedefficiencyandcustomersatisfactionthroughAI-drivenautomationandinnovation.Thispaperoffersa

comprehensiveoverviewoftheGenAIlandscape,providinginsightsintoitscapabilities,valuechain,andreal-worldapplications.

BehindtheCurtain:TheDynamicsofAIContentGeneration3

Introduction

GenAIisrevolutionizingourinteractionwithtechnologybyenabling

machinestoautonomouslygeneratenew,creativecontent.Fromwriting

articlesandcomposingmusicto

creatingvisualartandproducing

code,GenAIcanmimicandaugmenthumancreativity.Thistechnology

isbuiltonadvancedmachine

learning(ML)models,trainedonvastdatasets,whichlearnpatternsand

applythisknowledgetogenerate

originalcontentbasedonuserinput.

TheGenAIecosystemisbeyondthemodels

themselves.Itencompassesacomprehensivevaluechainthatincludeshardware

infrastructure,cloudplatforms,datacollectionandpreparation,modelhubs,andMachine

LearningOperations(MLOps)fordeployment.Eachlayerplaysacriticalroleinensuring

theeffectivedevelopment,deployment,and

scalingofGenAIapplications.ThiswhitepaperexploresthefullspectrumoftheGenAIvalue

chain,detailingtherolesofkeyplayersateachstage,thetechnologicaladvancementsdrivingprogress,andthechallengesbusinessesfacewhenadoptingGenAIsolutions.

Whetheryourelookingtounderstandthe

foundationalcomponentsorseekinginsights

intopracticalapplications,thispaperprovidesaholisticoverviewoftheGenAIlandscape,itspotential,andthefuturedirectionsitmaytake.

TheConceptofGenerativeAI

GenAIisaformofartificialintelligence(AI)thatgeneratesnewcontent,suchastextimages,music,audio,andvideosbasedonuser-

providedprompts.InGenAI,apromptservesasaninputordirectivefromtheuser,

guidingtheAItocreatethedesiredcontent.

Thesemodelsarepre-trainedonlarge

datasets,enablingthemtorecognizepatternsandgenerateoriginalcontentbasedonthe

promptstheyreceive.

Insimpleterms,whenauserprovidesa

promptorasksaquestiontoaGenAImodel,

themodelgeneratesaresponseorcreatestherequestedcontent.Forinstance,ifyouasktheAItowriteashortstoryaboutyourfavoritehero,itwillgenerateauniquestorybasedonyour

request.

BehindtheCurtain:TheDynamicsofAIContentGeneration4

GenerativeAIvaluechainframework

Layers

Overview

KeyPlayers

Infrastructure

Hardware

infrastructure

GenAImodelsrelyonprocessinglargeamountsofdatatoproduceoutputssuchastext,images,orvideos.Trainingthesemodels

involvescomplexcalculationsthatrequirepowerfulhardwaretohandleefficiently.SpecializedprocessorslikeGraphicsProcessingUnits(GPUs),TensorProcessingUnits(TPUs),andcustomchips

aredesignedtoprovidethenecessarycomputationalpower.ThisrobusthardwareensuresthatAImodelscanbetrainedandrunquickly,enablingreal-timeresponsesandmakingadvancedAI

applicationsbothpracticalandeffective..

Leader:NVIDIA,AMD,Intel

andGoogle(TPUsforinternalworkloads),Qualcomm

(mobile)

Otherrelevantplayer:

Cerebras(Wafer-ScaleEngineSambaNovaGraphcore

Cloud

platforms

CloudplatformsareessentialforbuildinganddeployingAImodelsastheyofferscalableandflexibleresources,

suchaspowerfulcomputersandstorage,withouttheneedto

purchaseandmaintainexpensivehardware.ServicesfromAWS,

GoogleCloud,andMicrosoftAzureprovidethenecessarytoolsandsecuritytomanagelargedatasetsandcomplexcomputations.

Theseplatformsareparticularlybeneficialfor

companiesthatlackthebudgetforextensivein-house

infrastructure.However,anorganizationthatcanaffordtosetupandmaintainitsownrobuston-premisessystems,canachieve

similarresults,potentiallysavingcostsinthelongrunwhilehavingmorecontroloverdatasecurityandcompliance.

Leader:AWS,AZURE,GoogleCloudPlatform

Otherrelevantplayers:

Alibaba,TencentandHuawei,IBM

DataandModels

Data

collectionandpreparation

(Annotation)

Itincludescollectingrelevantdata,cleaningittoeliminateerrors,andlabelingitforAItraining.Ensuringtheaccuracyofthedataisessential,asitprovidesastrongfoundationfortheAItoproducereliableresultsandeffectivelyassistusersintheirdailytasks.

RelevantPlayers:ScaleAI,Appen,Amazon

MTurk,StageZero,HiveAI,

SuperAnnotate,Lionbridge,Labelbox,SurgeAI

Foundationmodels

FoundationmodelsarelikeadvancedAItoolsdesignedto

understandandgeneratehuman-likecontent.Theyarebuiltusingdeepneuralnetworksandtrainedonlargedatasetsliketext,

images,andvideostograspgeneralconcepts.Forinstance,

GPT-3gainsinsightsaboutlanguagebyanalyzingalargevolumeofonlinetext.Thesemodelsareflexibleandversatileandcanbetailoredforspecifictasks.

Foundationmodelsarepre-trainedondiversedatasetstoacquirebroadknowledge,whichenablesthemtobefine-tunedoradaptedforspecificapplications,suchascustomerservicechatbotsor

medicalimageanalysis,throughadditionaltrainingortransferlearning.

GPT,DALL-EbyOpenAI,

BERT,T5byGoogle,AmazonTitan,ClaudebyAnthropic,Cohere,StablediffusionbyStabilityAI

Deployment

Modelhubs

andMLOps

ModelhubsandMLOpsstreamlinetheprocessofusingAImodels,makingiteasierforbusinessesanddeveloperstoaccesspowerfultoolsandintegratethemintoapplications.Modelhubsserveas

repositoriesforstoringandsharingthesepre-trainedandfine-

tunedmodels.MLOpsinvolvestheoperationalaspectsofmanagingthemodelslifecycle,fromdevelopmenttodeploymentand

maintenance.

HuggingFace,MLflow,Kubeflow

Application

Atthisstage,therefinedAImodelsfromModelHubsand

MLOpsareintegratedintoreal-worldapplicationstoenhance

automation,decision-making,anduserinteraction.Forexample,

inhealthcare,AImodelscouldassistindiagnosingmedical

conditionsorpersonalizingtreatmentplansbasedonpatientdata.Incustomerservice,chatbotspoweredbyAImodelscanprovideinstantresponsesandimprovetheoverallcustomerexperience.

FinancialinstitutionsmightuseAIforfrauddetectionorportfoliomanagement,optimizingprocessesandreducingrisks.

ChatGPT,Gemini,Dall-E,Midjourney,etc.

Applicationsbuiltonpre-

trainedfoundationalmodelsvarybasedonthecustomersusecaseandspecific

requirements.Often,thesemodelsareintegratedintoexistingapplicationsto

enhancetheirfunctionalityratherthancreatingentirelynewsoftware.

BehindtheCurtain:TheDynamicsofAIContentGeneration5

InfrastructureLayer

TheGenAIhardwarelandscape

featureskeyplayerslikeNVIDIA,AMD,Intel,andGoogle,eachadvancing

AIcapabilitieswiththeirunique

technologies.NVIDIAleadswithits

powerfulGPUshavingthehighest

marketsharewithmorethan80%,

followedbyAMD.Additionally,Intel

integratesAIintoitsCPUsandisa

majorplayerinAIinferencingand

high-performancecomputing,unlikeNVIDIA,whichhasacompetitive

advantageoverAItraining.Besides

this,INTCisdevelopingAIPCs,whichcouldbeatailwinddowntheroad.

GoogleutilizescustomTPUsforits

internalworkloads.InnovativestartupslikeCerebras,withitsWafer-Scale

EnginearedirectlycompetingwithNVIDIAandclaimstohaveoneofthefastestchipsevermade,withimprovedperformancetotrainthelargestAImodels.SambaNova,aisfull-stackGenAIdevelopmentalplatform,offersasetofhardware

solutions,fromchipstotraining

model.Graphcore,knownforits

innovativeIntelligenceProcessingUnits(IPUs)designedtorivalGPUs,isfacingfinancialchallengesandisseekingnewfundingtosustainitsoperations.

CreatingaGenAIplatformleverageshigh-

poweredcomputingandlargedatasets,

whichareaccessibleviacloudservice

providerssuchasAWS,Azure,andGoogle

CloudPlatform.Theseprovidersregularly

updatetheirinfrastructuretoincorporatethelatesttechnologicaladvancementsandofferseamlessintegrationwithfoundationalAI

models.

AWS,oneofthemarketleaders,providesa

widerangeofAIandMLservices,including

SageMakerformodelbuildingandtraining.IthasalsorecentlyintroducedAWSTrainium,acustomchipdesignedforefficientdeep

learningtraining.Azureleveragesitsrobustenterpriseconnectionsandintegrates

AIcapabilitieswithitsAzureMachine

Learningplatform,facilitatingtheseamlessdevelopmentandoperationalizationofAI

models.GoogleCloudPlatformstandsoutwithitsTensorFlowframeworkandcustom-builtTPUs,providingtailoredsolutionssuchasVertexAItosupportcomprehensiveMLworkflowsfromstarttofinish.

OthersignificantplayersincludeAlibaba

Cloud,whichisstrengtheningitsAIofferings

withtheintroductionofthePlatformforAI

(PAI)suite,cateringtotheAsianmarketand

deepeningitsinternationaltiesthrougha

recentpartnershipwithLVMH(aFrenchluxurycompany).IBMprovidesacomprehensive

suiteofenterprise-gradeAIsolutions(WatsonxAI)thatsupportorganizationsindeveloping

customizedAIapplicationsfromtheinitialstagestofulldeployment.

BehindtheCurtain:TheDynamicsofAIContentGeneration6

DataandModelsLayer

Datacollectionandpreparationis

acriticalphaseintheGenAIvalue

chain.Thesestagesinvolvegathering,cleaning,annotating,andcurating

data,toensureitissuitablefor

trainingAImodels.Thekeyplayers

includeScaleAI,whichprovidesdatalabelingservices,convertingrawdataintohigh-qualitytrainingdatausing

ML.Althoughthecompanypreviouslyfacedcompetitionfromin-house

processes,customersfrequentlyreturntoScaleAIafterattemptingthesesolutions.

ScaleAI,valuedatnearly$14billion,recentlysecureda$1billioninvestment.ThecompanyassiststechleaderslikeMicrosoft,Morgan

Stanley,OpenAI,andCohereindeveloping

andimprovingtheirdatasets.Appen,anothermajorplayer,offersAIdatacollectionand

hasdeliveredhigh-qualitydatasetstotop

techgiantslikeMicrosoftandGoogle.Despiteitsearlysuccess,Appen’smarketcaphas

plummetedfromover$4.3billiontoaround$150million,mainlyduetoclientlosses,

executiveturnover,andgrowingcompetition.AmazonMTurkisacrowd-sourcing

platformthatplaysacrucialroleinthedata

preparationprocessforGenAI.Itconnects

businessesandresearcherswithavastpoolofworkerstocompleteHumanIntelligenceTasks(HITs),suchastakingsurveys,objectlabelling,anddataannotation.Otherkeyplayers

workingtoautomatethedatalabellingprocessincludeHiveAI,SuperAnnotate,LionbridgeAI,Labelbox,andSurgeAI.

FoundationmodelsarelargeAIsystemstrainedonalargeamountofdiverse

data.Theyserveasastartingpointfor

datascientists,whousethemtobuildMLapplicationsinsteadofcreatingAIfromthegroundup.Developersusethese

pre-trainedmodelstoquicklybuildnewtoolsthatcanunderstandlanguage,

createtextandimages,andholdnaturalconversations.

BehindtheCurtain:TheDynamicsofAIContentGeneration7

FoundationalModel

ProviderName

OverviewandDevelopments

Text-to-TextModels

GPT

OpenAI

?OpenAIraised$10billioninfundingfrominvestorslikeMicrosoftin2023.

?Thelatestversion,GPT-4-turbo,offersfasterandmorecost-effectiveperfor-mance.

?OpenAIisindiscussionstoraiseseveralbilliondollarsthatwouldvaluethecom-panyat>$100billion.

LLaMA

Meta

MetarecentlyreleasedLlama3.1(anopen-sourcemodel).

Claude2

Anthropic

?IntroducedClaude2thatfocusesonenhancedsafety

?Amazoninvested$4billioninAnthropicin2024.

PaLM2

Google

IntroducedPaLMinApril2022andsincethenGooglehasexpandeditslargelanguagemodelsintomultimodalfields,includingthedevelopmentofPaLM-Eforimageand

robotdata,AudioPaLMforaudio,andMed-PaLMM,whichintegratesmedicalimageswithmedicallanguagedata.

BERT

Google

GoogleBERTintroducedbidirectionalcontextanalysisforimprovedlanguageunder-standing,anditsconceptshaveshapednewermodelslikeT5andMUM,whichhandletaskssuchastranslationandinformationretrieval.

RoBERTa

FacebookAI

ItisanimprovedversionofGoogle’s2018BERTmodel,optimizedforenhancedpre-trainingofNLPsystems.

Bloom

BigScience

Amultilinguallargelanguagemodelthatunderstandsandgeneratestextinmultiplelanguages

Mistral7B

MistralAI

?MistralAIraised$640millionata$6billionvaluationin2024.

?MistralmodelsoutperformotherfoundationalmodelslikeLlama2andofferssixtimesfasterreasoning.

Chinchilla

DeepMind

DeepMind,apartofAlphabet,isfundedthroughAlphabet’sinvestments.

Text-to-ImageModels

DALL-E3

OpenAI

InSeptember2023,OpenAIintegratedDALL-E3intoChatGPTtosupporttext-to-im-age.

StableDiffusionXL

StabilityAI

Raised~$80millioninfundingfromagroupofinvestors,includingGreycroft,CoatueManagement,SoundVentures,LightspeedVenturePartners,SeanParker,EricSchmidt,andPremAkkaraju.

Imagen

Google

GooglehasannouncedthatBardnowsupportsimagegenerationwiththeImagen2model.

MidJourney

MidJourney

MidJourneyhashintedtoforayintoAIhardware.

CodeGenerationModels

CodeLLaMA

Meta

CodeLlamaisanAImodelbuiltontopofLlama2,fine-tunedforgeneratinganddiscussingcode.

Speech-to-Text/Text-to-SpeechModels

Whisper

OpenAI

Aspeech-to-textmodelthatofferstranscriptioninmultiplelanguages,alongwithtranslationfromthoselanguagesintoEnglish.

VALL-E

Microsoft

Atext-to-speechandvoicecloningmodel.

Music/SpeechGenerationModels

Jukebox

OpenAI

Itisaneuralnetwork-basedmusicAIfromOpenAIthatcangenerateaudiofromatextorinstrumentalprompt.

MusicLM

Alphabet

Atext-to-musictool.GooglehasrecentlyreleaseditsupgradedversionnamedMusicFX.

Audiocraft

Meta

AudioCraftconsistsofthreemodels:MusicGen(text-to-music),AudioGen(trainedmodeonpublicsoundeffectslikeadogbarking,carshonking,orfootstepsona

woodenfloor),andEnCodec(forhigher-qualitymusicgeneration).

Polly

Amazon

AcloudservicebyAWSthatconvertstextintospokenaudio,allowingdeveloperstocreatespeech-enabledapplicationsandproducts.

BehindtheCurtain:TheDynamicsofAIContentGeneration8

Deploymentlayer

Thedeploymentlayerinvolves

creatingaGenAIapplicationfortheenduser,whichrequiresaccessto

apre-trainedfoundationalmodel.

Modelhubsprovideacentralized

locationtoaccessandstorethese

models,simplifyingtheprocesswhilesavingtimeandresources.Model

HubslikeHuggingFace,TensorFlow,andGithubstorefoundational

models,managedifferentversions,andofferAPIsandhostingservicestoallowmodelstobeaccessed

programmatically.

Onceamodelisfine-tunedandintegrated

intoanapplication,itcanbemanaged

throughMLOpstools.Theseautomated

proceduresensuresmoothoperation,offeringmodelmonitoringandmanagingtheentire

lifecycle,includingdeployment,monitoring,scaling,andretraining.

IntheGenAIvaluechain,thecreationof

applicationsisthefinalstage,wherethe

valuecreatedbythefoundationalmodels–facilitatedbyhardwareinfrastructure,cloudplatforms,datapreparation,modelhubs,andMLOps–isrealizedasreal-worldproducts

andservices.EnterprisesleverageGenAI

applicationstoautomatevariousprocesses,enhancecustomerexperiences,andinnovateinproductdevelopment.

GenAIisextensivelyemployedacrossvariousindustries,offeringamultitudeofapplications.However,forcompaniestofullyharnessthe

potentialofthiscutting-edgetechnology,itiscrucialtoidentifyspecificusecasesrelevanttotheiroperations.Theimplementationof

GenAIisinherentlycomplexandexpensive.

ManyU.S.companieshavefacedsignificantchallenges,withonlyafewsuccessfully

advancingtheirAIprojectsfromthe

experimentalorpilotstagetofull-scale

production.Thesedifficultiesoftenstemfrompoor-qualitydataandimplementationissues,leadingtoslowerrealizationofbenefitsand

makingitdifficulttoscaleGenAIinitiatives.

Furthermore,AIprojectsrequireextensive

planning,whichhasextendedtheplanning

phaseanddelayedthecommencementof

production-readyprojects.Despitethese

hurdles,anotablenumberofcompanies

havesuccessfullytransitionedfrompilot

phasestofullimplementation,experiencingsignificantproductivitygainsandreceiving

positivecustomerfeedbackfromAI-poweredchatbots.

TheapplicationsofGenAIvarysignificantlyacrossdifferentindustries.Incertainsectors,itisutilizedtoenhancethecustomercare

experiencebydeployingGenAIassistantsthatadeptlyaddressandresolvecustomerinquiries.Conversely,otherenterprises

leverageGenAItooptimizeoperational

efficiencyandprocessoptimization,drivinginnovativesolutionsthatcontributeto

additionalrevenuestreams.

BehindtheCurtain:TheDynamicsofAIContentGeneration9

Deploymentlayer

Thedeploymentlayerinvolves

creatingaGenAIapplicationfortheenduser,whichrequiresaccessto

apre-trainedfoundationalmodel.

Modelhubsprovideacentralized

locationtoaccessandstorethese

models,simplifyingtheprocesswhilesavingtimeandresources.Model

HubslikeHuggingFace,TensorFlow,andGithubstorefoundational

models,managedifferentversions,andofferAPIsandhostingservicestoallowmodelstobeaccessed

programmatically.

Onceamodelisfine-tunedandintegrated

intoanapplication,itcanbemanaged

throughMLOpstools.Theseautomated

proceduresensuresmoothoperation,offeringmodelmonitoringandmanagingtheentire

lifecycle,includingdeployment,monitoring,scaling,andretraining.

IntheGenAIvaluechain,thecreationof

applicationsisthefinalstage,wherethe

valuecreatedbythefoundationalmodels–facilitatedbyhardwareinfrastructure,cloudplatforms,datapreparation,modelhubs,andMLOps–isrealizedasreal-worldproducts

andservices.EnterprisesleverageGenAI

applicationstoautomatevariousprocesses,enhancecustomerexperiences,andinnovateinproductdevelopment.

GenAIisextensivelyemployedacrossvariousindustries,offeringamultitudeofapplications.However,forcompaniestofullyharnessthe

potentialofthiscutting-edgetechnology,itiscrucialtoidentifyspecificusecasesrelevanttotheiroperations.Theimplementationof

GenAIisinherentlycomplexandexpensive.

ManyU.S.companieshavefacedsignificantchallenges,withonlyafewsuccessfully

advancingtheirAIprojectsfromthe

experimentalorpilotstagetofull-scale

production.Thesedifficultiesoftenstemfrompoor-qualitydataandimplementationissues,leadingtoslowerrealizationofbenefitsand

makingitdifficulttoscaleGenAIinitiatives.

Furthermore,AIprojectsrequireextensive

planning,whichhasextendedtheplanning

phaseanddelayedthecommencementof

production-readyprojects.Despitethese

hurdles,anotablenumberofcompanies

havesuccessfullytransitionedfrompilot

phasestofullimplementation,experiencingsignificantproductivitygainsandreceiving

positivecustomerfeedbackfromAI-poweredchatbots.

TheapplicationsofGenAIvarysignificantlyacrossdifferentindustries.Incertainsectors,itisutilizedtoenhancethecustomercare

experiencebydeployingGenAIassistantsthatadeptlyaddressandresolvecustomerinquiries.Conversely,otherenterprises

leverageGenAItooptimizeoperational

efficiencyandprocessoptimization,drivinginnovativesolutionsthatcontributeto

additionalrevenuestreams.

BehindtheCurtain:TheDynamicsofAIContentGeneration10

Conclusion

GenAIrepresentsapivotaladvancementinAI,capableofreshapingindustries

byautomatingtasks,enhancingcustomerexperiences,andfosteringinnovation.Asoutlinedinthiswhitepaper,theGenAIvaluechainconsistsofmultiple

interconnectedlayers–frompowerfulhardwareandscalablecloudplatformstorobustdatapreparationandadvancedfoundationalmodels.

DespitetheexcitementsurroundingAI,manycompaniesstruggletorealizetangiblebenefitsduetohighcostsandtechnicalhurdles.Atthedeploymentstage,AIplaysonlyasmallrole,makingitdifficulttoachieveimmediateresults.ThishighlightstheneedforadeeperunderstandingoftheGenAIvaluechainandastrategicapproachtoadoption.Nonetheless,thefutureofGenAIispromising.Asmodelsbecomemoresophisticatedandpersonalized,andasthevaluechaincontinuestoevolve,wecanexpectnewapplicationsandusecasestoemerge,furtherpushingtheboundariesofwhatispossiblewithAI.BusinessesthatsuccessfullynavigatethecomplexitiesofGenAIadoptionwillbewell-positionedtogainacompetitiveedgeinanincreasinglyAI-drivenworld.

ThefutureofGenAIisnotsolelyaboutthetechnologyitself,butalsoabouthow

effectivelyitisintegratedintobroaderbusinessstrategiestoshapethenexteraofdigitaltransformation.

AsGenAIcontinuestoevolve,itsimpactisbecomingincreasinglyapparent

acrossvariousindustriesandsectors,makingitatopictoovasttofullycoverin

asinglewhitepaper.Thispaperservesasthefirstinaseriesthatwilldelveinto

differentaspectsoftheGenAIvaluechain.FutureepisodesoftheGenAIserieswillexplorethesetopicsingreaterdepth,providingacomprehensiveunderstandingoftheGenAImarket,includingapplicationsacrossindustries,technological

advancements,andupdatesonMCA,PE,andVCinvestments.

Staytunedforthenextepisode,whereIwillfurtherunpacktheintricaciesofthistransformativefield.

BehindtheCurtain:TheDynamicsofAIContentGeneration''

References

?

/blog/how-real-world-enterprises-are-leveraging-generative-ai#:

~:-text=At%20Databricks%2C%20we’ve%20seen,or%20retail%20and%20consumer%20goods.

?

/blog/industries-disrupted-by-ai/

?

/transform/where-gen-ai-is-impacting-industries-in-2024

?

/publications/2024/from-potential-to-profit-with-genai

?

https://swisscognitive.ch/2023/03/21/the-power-of-generative-ai-exploring-its-impact-applica

-tions-limitations-and-future-redefining-business-performance-with-generative-ai/

?

/article/generative-ai-a-creative-new-world/

?

/art

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論