湖南省2025屆高三下學(xué)期“一起考”大聯(lián)考(模擬二)數(shù)學(xué)試題 含解析_第1頁(yè)
湖南省2025屆高三下學(xué)期“一起考”大聯(lián)考(模擬二)數(shù)學(xué)試題 含解析_第2頁(yè)
湖南省2025屆高三下學(xué)期“一起考”大聯(lián)考(模擬二)數(shù)學(xué)試題 含解析_第3頁(yè)
湖南省2025屆高三下學(xué)期“一起考”大聯(lián)考(模擬二)數(shù)學(xué)試題 含解析_第4頁(yè)
湖南省2025屆高三下學(xué)期“一起考”大聯(lián)考(模擬二)數(shù)學(xué)試題 含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆高三“一起考”大聯(lián)考(模擬二)數(shù)學(xué)(時(shí)量:120分鐘滿(mǎn)分:150分)命題人:毛水一?選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.已知集合,則()A. B. C. D.【答案】C【解析】【分析】由一元二次不等式與一元一次不等式,求得集合,利用交集,可得答案.【詳解】由題意可得,則.故選:C.2.以為漸近線(xiàn)的雙曲線(xiàn)可以是()A. B.C. D.【答案】B【解析】【分析】利用漸近線(xiàn)的求法,直接求出各個(gè)選項(xiàng)的漸近線(xiàn)方程,即可求解.【詳解】對(duì)于A,由得漸近線(xiàn)方程為,故A錯(cuò)誤;對(duì)于B,由得漸近線(xiàn)方程為,故B正確;對(duì)于C,由得漸近線(xiàn)方程為,故C錯(cuò)誤;對(duì)于D,由得漸近線(xiàn)方程為,故D錯(cuò)誤.故選:B.3.已知平面向量,則()A.1 B. C. D.【答案】D【解析】【分析】利用數(shù)量積的坐標(biāo)運(yùn)算即可求得.【詳解】.故選:D.4.若,則()A. B. C. D.【答案】B【解析】【分析】由同角三角函數(shù)的商式與正弦函數(shù)的和角公式,根據(jù)方程思想,利用正弦函數(shù)的差角公式,可得答案.【詳解】由,得,即,由,得,故,則.故選:B.5.甲?乙?丙?丁?戊5名同學(xué)進(jìn)行勞動(dòng)技術(shù)比賽,決出第1名到第5名的名次.甲和乙去向老師詢(xún)問(wèn)成績(jī),老師對(duì)甲說(shuō):“很遺憾,你和乙都沒(méi)有得到冠軍.”對(duì)乙說(shuō):“你當(dāng)然不會(huì)是最差的.”從這兩個(gè)回答分析,5人的名次排列的情形有()A.36種 B.48種 C.54種 D.64種【答案】C【解析】【分析】由排列數(shù)計(jì)算,根據(jù)分步乘法原理,可得答案.【詳解】分三步完成:冠軍有種可能,乙的名次有種可能,余下3人有種可能,所以5人的名次排列有(種)不同情況,故選:C.6.已知,函數(shù),在上沒(méi)有零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.【答案】B【解析】【分析】根據(jù)題意,分別討論以及的情況,結(jié)合零點(diǎn)的定義代入計(jì)算,即可得到結(jié)果.【詳解】當(dāng)時(shí),,若無(wú)解,則或;當(dāng)時(shí),,若無(wú)解,則.綜上,實(shí)數(shù)的取值范圍是.故選:B.7.已知某正三棱柱外接球的表面積為,則該正三棱柱體積的最大值為()A.1 B. C. D.4【答案】A【解析】【分析】根據(jù)球的表面積公式可得,即可根據(jù)正三棱柱的性質(zhì)以及勾股定理求得高,利用體積公式可得,構(gòu)造函數(shù),求導(dǎo)即可求解最值.【詳解】設(shè)外接球的半徑為,則,解得.設(shè)正三棱柱的底面三角形的邊長(zhǎng)為,則該三角形外接圓的半徑為,故該正三棱柱的高為,所以該正三棱柱的體積.由,解得.令,則,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,所以函數(shù)在時(shí)取得最大值,故,所以該正三棱柱體積的最大值為1.故選:A.8.記數(shù)列的前項(xiàng)和為,若,且,則的最小值為()A.0 B.1 C.2 D.3【答案】D【解析】【分析】利用結(jié)合分組求和、裂項(xiàng)求和求,通過(guò)規(guī)律探尋得知是整數(shù),進(jìn)而得出是偶數(shù)的平方,欲使取最小整數(shù)值,則即可,再舉例說(shuō)明的可行性.【詳解】數(shù)列中,由,得,即,所以,又,所以又由,得且,可知,所以是整數(shù),于是是整數(shù),且是偶數(shù)的平方,則,當(dāng)取等號(hào).下面舉例說(shuō)明可以取到,,,此時(shí),所以的最小值為3.故選:D.二?多選題:本題共3小題,每小題6分,共18分.在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求.全部選對(duì)的得6分,部分選對(duì)的得部分分,有選錯(cuò)的得0分.9.已知,都是復(fù)數(shù),下列正確的是()A.若,則 B.若,則C.若,則 D.若,則【答案】AD【解析】【分析】根據(jù)共軛復(fù)數(shù)的定義及復(fù)數(shù)的乘法運(yùn)算即可判斷A;舉出反例即可判斷BC;根據(jù)復(fù)數(shù)的乘法運(yùn)算及復(fù)數(shù)的模的計(jì)算公式即可判斷D.【詳解】設(shè),對(duì)于A,若,則,故,故A正確;對(duì)于B,當(dāng)時(shí),,故B錯(cuò)誤;對(duì)于C,當(dāng)時(shí),,故C錯(cuò)誤;對(duì)于D,若,則,所以,,同理,所以,所以,故D正確.故選:AD.10.下列四棱錐的所有棱長(zhǎng)都相等,,,,,是四棱錐的頂點(diǎn)或所在棱的中點(diǎn),則直線(xiàn)不與平面垂直的是()A B.C. D.【答案】BCD【解析】【分析】由線(xiàn)面垂直的判定,結(jié)合向量說(shuō)明線(xiàn)線(xiàn)的不垂直,逐個(gè)判斷即可.【詳解】由條件可知四棱錐為正四棱錐,對(duì)于A:設(shè)的交點(diǎn)為,由正四棱錐的結(jié)構(gòu)特征可知:面,易知:,又,為平面內(nèi)兩條相交直線(xiàn),所以直線(xiàn)與平面垂直;對(duì)于B:取的中點(diǎn)為,連接,有中位線(xiàn)性質(zhì)可知:,,所以四邊形為平行四邊形,所以,可證直線(xiàn)平行平面;對(duì)于C:設(shè)棱長(zhǎng)為2,,所以,所以與不垂直,所以直線(xiàn)不與平面垂直;對(duì)于D:設(shè)棱長(zhǎng)為2,,,所以所以與不垂直,所以直線(xiàn)不與平面垂直;故選:BCD.11.已知函數(shù),則()A.B.對(duì)任意實(shí)數(shù)C.D.若直線(xiàn)與函數(shù)和的圖象共有三個(gè)交點(diǎn),設(shè)這三個(gè)交點(diǎn)的橫坐標(biāo)分別為,則【答案】ACD【解析】【分析】代入化簡(jiǎn)即可求解ABC,根據(jù)函數(shù)的單調(diào)性可大致判斷函數(shù)和的圖象,且為偶函數(shù),結(jié)合圖象可判斷,且,再解不等式即可判斷D.【詳解】對(duì)A,,故A正確;對(duì)B,,而,故B錯(cuò)誤;對(duì)C,,故C正確;對(duì)D,,令,得,當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以在處取得極小值1,當(dāng)時(shí),;當(dāng)時(shí),.恒成立,所以在上單調(diào)遞增,當(dāng);當(dāng).所以函數(shù)的大致圖象如圖所示,不妨設(shè),由為偶函數(shù)可得,直線(xiàn)與和的圖象有三個(gè)交點(diǎn),顯然,令,整理得,解得或(舍去),所以,即,又因?yàn)?,所以,故D正確.故選:ACD.三?填空題:本題共3小題,每小題5分,共15分.12.已知實(shí)數(shù)滿(mǎn)足,且,則__________.【答案】【解析】【分析】由對(duì)數(shù)式的定義,利用對(duì)數(shù)的運(yùn)算律與換底公式,可得答案.【詳解】由可知,所以,即,所以.故答案為:.13.已知函數(shù),且的最小值為,則__________.【答案】1【解析】【分析】先化簡(jiǎn)函數(shù)得,再根據(jù)題意可得函數(shù)的最小正周期,再根據(jù)正弦函數(shù)的周期性即可得解.【詳解】因?yàn)?,又,且的最小值為,所以函?shù)的最小正周期,由,所以.故答案為:1.14.已知過(guò)拋物線(xiàn)的焦點(diǎn)的直線(xiàn)與拋物線(xiàn)交于兩點(diǎn)(在第一象限),以為直徑的圓與拋物線(xiàn)的準(zhǔn)線(xiàn)相切于點(diǎn).若為坐標(biāo)原點(diǎn),則的面積為_(kāi)_________.【答案】【解析】【分析】先求得,由條件推得軸,由推出,得到這些的方程,與拋物線(xiàn)方程聯(lián)立,利用弦長(zhǎng)公式求得,即得的面積.【詳解】依題意,得,則拋物線(xiàn)的方程為.由題意可知與拋物線(xiàn)準(zhǔn)線(xiàn)垂直,在中,,則,則直線(xiàn)的方程為.由消去并化簡(jiǎn)整理得:易得,則,又原點(diǎn)到直線(xiàn)的距離為,故.故答案為:.四?解答題:本題共5小題,共77分.解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.15.中國(guó)是茶的故鄉(xiāng),茶文化源遠(yuǎn)流長(zhǎng),博大精深.某興趣小組,為了了解當(dāng)?shù)鼐用駥?duì)喝茶的態(tài)度,隨機(jī)調(diào)查了100人,并將結(jié)果整理如下:?jiǎn)挝唬喝四挲g段態(tài)度合計(jì)不喜歡喝茶喜歡喝茶35歲以上(含35歲)30306035歲以下251540合計(jì)5545100(1)依據(jù)小概率值的獨(dú)立性檢驗(yàn),能否據(jù)此推斷該地居民喜歡喝茶與年齡有關(guān)?(2)以樣本估計(jì)總體,用頻率代替概率.該興趣小組在當(dāng)?shù)叵矚g喝茶的人群中,隨機(jī)選出2人參加茶文化藝術(shù)節(jié).抽取的2人中,35歲以下的人數(shù)記為,求的分布列與期望.參考公式:,其中.參考數(shù)據(jù):0.100.050.0100.0050.0012.7063.8416.6357.87910.828【答案】(1)不能(2)分布列見(jiàn)解析,【解析】【分析】(1)根據(jù)列聯(lián)表計(jì)算得出的值即可得出結(jié)論;(2)易知的所有取值可能為0,1,2,分別計(jì)算出對(duì)應(yīng)概率可得分布列及其期望值.【小問(wèn)1詳解】零假設(shè)為:該地居民喜歡喝茶與年齡沒(méi)有關(guān)系.根據(jù)列聯(lián)表中的數(shù)據(jù),可以求得.根據(jù)小概率值的獨(dú)立性檢驗(yàn),沒(méi)有充分證據(jù)推斷不成立,因此可以認(rèn)為成立,據(jù)此推斷該地居民喜歡喝茶與年齡沒(méi)有關(guān)系.【小問(wèn)2詳解】由題意可知,的取值可能為.則.所以的分布列為012所以的期望為.16.在中,內(nèi)角所對(duì)的邊分別為,且.(1)判斷的形狀;(2)設(shè),且是邊的中點(diǎn),求當(dāng)最大時(shí),的面積.【答案】(1)等腰三角形(2)【解析】【分析】(1)根據(jù)二倍角公式化簡(jiǎn)可得,即可根據(jù)三角函數(shù)的性質(zhì)求解得解,(2)根據(jù)余弦定理結(jié)合基本不等式可得,則,結(jié)合邊的關(guān)系可得為正三角形,即可求解.【小問(wèn)1詳解】由二倍角公式得,所以,整理得,即.因?yàn)椋?,即,即為等腰三角?【小問(wèn)2詳解】由(1)及題設(shè),有,所以,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.又為三角形內(nèi)角,所以,即的最大值為,此時(shí),又,所以,故,可得為直角三角形且.又由(1)可得為正三角形,所以當(dāng)最大時(shí),的面積.17.在三棱錐中,平面平面平面.(1)求證:;(2)若二面角的余弦值為,且,求.【答案】(1)證明見(jiàn)解析(2)【解析】【分析】(1)過(guò)作于,利用面面垂直推出線(xiàn)面垂直,即得,再由平面推出,可得平面即可證得結(jié)論;(2)法1:過(guò)作于,連接,證明即為二面角的平面角,即得,再設(shè),將分別用的三角函數(shù)表示,借助于直角,求得,即可求出;法2:依題建系,設(shè),求出或用的三角函數(shù)表示出相關(guān)點(diǎn)的坐標(biāo),利用空間向量夾角公式求得,即可.【小問(wèn)1詳解】如圖,過(guò)作于.因?yàn)槠矫嫫矫?,平面平面平面所以平?又平面,所以.又平面平面,所以.因?yàn)槠矫妫?,所以平面,又平面,所?【小問(wèn)2詳解】法1:過(guò)作于,連接,由(1)平面,平面,可得,因平面,,故平面,又平面,所以.所以即為二面角的平面角,所以則.又由(1)平面,平面,則,因平面,平面,則.設(shè),因?yàn)?,,則,,所以,解得,則,從而.法2:由(1)可得.如圖,以為原點(diǎn),所在直線(xiàn)分別為軸,軸建立空間直角坐標(biāo)系,記二面角為,設(shè),因?yàn)?,所以,則,所以.設(shè)平面的法向量為,則即令,得,易知平面的一個(gè)法向量為,又,所以,解得,則,所以.18.已知函數(shù).(1)當(dāng)時(shí),求的單調(diào)區(qū)間與極值;(2)若恒成立,求的值;(3)求證:.【答案】(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;極小值0,無(wú)極大值(2)(3)證明見(jiàn)解析【解析】【分析】(1)求導(dǎo),根據(jù)函數(shù)的單調(diào)性可得極值;(2)分情況討論函數(shù)的單調(diào)性與最值情況,可得參數(shù)值;(3)利用放縮法,由,可知若證,即證,再根據(jù),可得證.【小問(wèn)1詳解】當(dāng)時(shí),,則,當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增,所以單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,在處取得極小值0,無(wú)極大值.【小問(wèn)2詳解】由題意得,①當(dāng)時(shí),,所以在上單調(diào)遞增,所以當(dāng)時(shí),,與矛盾;②當(dāng)時(shí),當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增,所以,因?yàn)楹愠闪?,所?記,當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,所以,所以.又,所以,所以.【小問(wèn)3詳解】先證,設(shè),則,所以在區(qū)間上單調(diào)遞減,所以,即.所以,再證.由(2)可知,當(dāng)時(shí)等號(hào)成立,令,則,即,所以,累加可得,所以.19.已知點(diǎn),動(dòng)點(diǎn)滿(mǎn)足,動(dòng)點(diǎn)的軌跡記為.(1)求的方程;(2)直線(xiàn)與軸交于點(diǎn)為上的動(dòng)點(diǎn),過(guò)作的兩條切線(xiàn),分別交軸于點(diǎn).①證明:直線(xiàn)的斜率成等差數(shù)列;②經(jīng)過(guò)三點(diǎn),是否存在點(diǎn),使得?若存在,求;若不存在,請(qǐng)說(shuō)明理由.【答案】(1)(2)①證明見(jiàn)解析;②存,【解析】【分析】(1)根據(jù)橢圓的定義,可得曲線(xiàn)的方程.(2)設(shè)直線(xiàn)的方程為,將直線(xiàn)方程與橢圓方程聯(lián)立.①根據(jù)直線(xiàn)與橢圓的位置關(guān)系,由可以得到關(guān)于的一元二次方程,根據(jù)韋達(dá)定理,可得,再得,所以直線(xiàn)的斜率成等差數(shù)列.②法一:分別用表示出的坐標(biāo),結(jié)合①中的,,根據(jù)求的值即可;法二:分別用表示出的坐標(biāo),結(jié)合①中的,,根據(jù)求的值即可;法三:分別用表示出的坐標(biāo),結(jié)合①中的,,根據(jù)求的值即可;法四:分別用表示出的坐標(biāo),結(jié)合①中的,,根據(jù)求的值即可.【小問(wèn)1詳解】因?yàn)?,所以的軌跡是以為焦點(diǎn),且長(zhǎng)軸長(zhǎng)為4的橢圓,設(shè)的軌跡方程為,則,可得.又,所以,所以的方程為.【小問(wèn)2詳解】設(shè),易知過(guò)且與相切的直線(xiàn)斜率存在,設(shè)直線(xiàn)方程為,聯(lián)立,消去得,由,得設(shè)兩條切線(xiàn)的斜率分別為,則①證明:設(shè)的斜率為,則,因?yàn)?,所以的斜率成等差?shù)列.②法1:在中,令,得,所以,同理,得,所以的中垂線(xiàn)為.易得的中點(diǎn)為,所以的中垂線(xiàn)為,聯(lián)立解得,所以,,要使,則,即,整理得,而,所以,解得,因此,故存在符合題意的點(diǎn),使得,此時(shí).法2:在中,令,得

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論