四川省瀘州市龍馬潭區(qū)天立學(xué)校2025年高三第一次模擬考試(1月)數(shù)學(xué)試題試卷_第1頁
四川省瀘州市龍馬潭區(qū)天立學(xué)校2025年高三第一次模擬考試(1月)數(shù)學(xué)試題試卷_第2頁
四川省瀘州市龍馬潭區(qū)天立學(xué)校2025年高三第一次模擬考試(1月)數(shù)學(xué)試題試卷_第3頁
四川省瀘州市龍馬潭區(qū)天立學(xué)校2025年高三第一次模擬考試(1月)數(shù)學(xué)試題試卷_第4頁
四川省瀘州市龍馬潭區(qū)天立學(xué)校2025年高三第一次模擬考試(1月)數(shù)學(xué)試題試卷_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

四川省瀘州市龍馬潭區(qū)天立學(xué)校2025年高三第一次模擬考試(1月)數(shù)學(xué)試題試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)滿足,當(dāng)時,,則()A.或 B.或C.或 D.或2.已知是球的球面上兩點,,為該球面上的動點.若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.3.若與互為共軛復(fù)數(shù),則()A.0 B.3 C.-1 D.44.若集合,,則()A. B. C. D.5.設(shè)直線過點,且與圓:相切于點,那么()A. B.3 C. D.16.復(fù)數(shù)滿足(為虛數(shù)單位),則的值是()A. B. C. D.7.已知為圓:上任意一點,,若線段的垂直平分線交直線于點,則點的軌跡方程為()A. B.C.() D.()8.定義在上的奇函數(shù)滿足,若,,則()A. B.0 C.1 D.29.已知集合,,則=()A. B. C. D.10.已知向量,,則與共線的單位向量為()A. B.C.或 D.或11.若a>b>0,0<c<1,則A.logac<logbc B.logca<logcb C.a(chǎn)c<bc D.ca>cb12.若點x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(nèi)(包括邊界),則A.-3,1 B.-3,5 C.-∞,-3二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域是.14.能說明“若對于任意的都成立,則在上是減函數(shù)”為假命題的一個函數(shù)是________.15.一個村子里一共有個人,其中一個人是謠言制造者,他編造了一條謠言并告訴了另一個人,這個人又把謠言告訴了第三個人,如此等等.在每一次謠言傳播時,謠言的接受者都是在其余個村民中隨機挑選的,當(dāng)謠言傳播次之后,還沒有回到最初的造謠者的概率是_______.16.已知向量,,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項和為,且滿足.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)證明:.18.(12分)在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知:,:,:.(1)求與的極坐標(biāo)方程(2)若與交于點A,與交于點B,,求的最大值.19.(12分)已知橢圓經(jīng)過點,離心率為.(1)求橢圓的方程;(2)過點的直線交橢圓于、兩點,若,在線段上取點,使,求證:點在定直線上.20.(12分)已知函數(shù),函數(shù),其中,是的一個極值點,且.(1)討論的單調(diào)性(2)求實數(shù)和a的值(3)證明21.(12分)如圖,在四棱柱中,底面為菱形,.(1)證明:平面平面;(2)若,是等邊三角形,求二面角的余弦值.22.(10分)如圖,三棱柱的側(cè)棱垂直于底面,且,,,,是棱的中點.(1)證明:;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

簡單判斷可知函數(shù)關(guān)于對稱,然后根據(jù)函數(shù)的單調(diào)性,并計算,結(jié)合對稱性,可得結(jié)果.【詳解】由,可知函數(shù)關(guān)于對稱當(dāng)時,,可知在單調(diào)遞增則又函數(shù)關(guān)于對稱,所以且在單調(diào)遞減,所以或,故或所以或故選:C【點睛】本題考查函數(shù)的對稱性以及單調(diào)性求解不等式,抽象函數(shù)給出式子的意義,比如:,,考驗分析能力,屬中檔題.2.C【解析】

如圖所示,當(dāng)點C位于垂直于面的直徑端點時,三棱錐的體積最大,設(shè)球的半徑為,此時,故,則球的表面積為,故選C.考點:外接球表面積和椎體的體積.3.C【解析】

計算,由共軛復(fù)數(shù)的概念解得即可.【詳解】,又由共軛復(fù)數(shù)概念得:,.故選:C【點睛】本題主要考查了復(fù)數(shù)的運算,共軛復(fù)數(shù)的概念.4.A【解析】

用轉(zhuǎn)化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點睛】本題考查了并集及其運算,分式不等式的解法,熟練掌握并集的定義是解本題的關(guān)鍵.屬于基礎(chǔ)題.5.B【解析】

過點的直線與圓:相切于點,可得.因此,即可得出.【詳解】由圓:配方為,,半徑.∵過點的直線與圓:相切于點,∴;∴;故選:B.【點睛】本小題主要考查向量數(shù)量積的計算,考查圓的方程,屬于基礎(chǔ)題.6.C【解析】

直接利用復(fù)數(shù)的除法的運算法則化簡求解即可.【詳解】由得:本題正確選項:【點睛】本題考查復(fù)數(shù)的除法的運算法則的應(yīng)用,考查計算能力.7.B【解析】

如圖所示:連接,根據(jù)垂直平分線知,,故軌跡為雙曲線,計算得到答案.【詳解】如圖所示:連接,根據(jù)垂直平分線知,故,故軌跡為雙曲線,,,,故,故軌跡方程為.故選:.【點睛】本題考查了軌跡方程,確定軌跡方程為雙曲線是解題的關(guān)鍵.8.C【解析】

首先判斷出是周期為的周期函數(shù),由此求得所求表達式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點睛】本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎(chǔ)題.9.C【解析】

計算,,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,意在考查學(xué)生的計算能力.10.D【解析】

根據(jù)題意得,設(shè)與共線的單位向量為,利用向量共線和單位向量模為1,列式求出即可得出答案.【詳解】因為,,則,所以,設(shè)與共線的單位向量為,則,解得或所以與共線的單位向量為或.故選:D.【點睛】本題考查向量的坐標(biāo)運算以及共線定理和單位向量的定義.11.B【解析】試題分析:對于選項A,,,,而,所以,但不能確定的正負(fù),所以它們的大小不能確定;對于選項B,,,兩邊同乘以一個負(fù)數(shù)改變不等號方向,所以選項B正確;對于選項C,利用在第一象限內(nèi)是增函數(shù)即可得到,所以C錯誤;對于選項D,利用在上為減函數(shù)易得,所以D錯誤.所以本題選B.【考點】指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì)【名師點睛】比較冪或?qū)?shù)值的大小,若冪的底數(shù)相同或?qū)?shù)的底數(shù)相同,通常利用指數(shù)函數(shù)或?qū)?shù)函數(shù)的單調(diào)性進行比較;若底數(shù)不同,可考慮利用中間量進行比較.12.D【解析】

畫出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內(nèi)的點(x,y)【詳解】畫出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內(nèi)的點(x,y)和定點P(2,-1)設(shè)k=y+1x-2,結(jié)合圖形可得k≥k由題意得點A,B的坐標(biāo)分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.【點睛】解答本題的關(guān)鍵有兩個:一是根據(jù)數(shù)形結(jié)合的方法求解問題,即把y+1x-2二、填空題:本題共4小題,每小題5分,共20分。13.【解析】解:因為,故定義域為14.答案不唯一,如【解析】

根據(jù)對基本函數(shù)的理解可得到滿足條件的函數(shù).【詳解】由題意,不妨設(shè),則在都成立,但是在是單調(diào)遞增的,在是單調(diào)遞減的,說明原命題是假命題.所以本題答案為,答案不唯一,符合條件即可.【點睛】本題考查對基本初等函數(shù)的圖像和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個在上不是單調(diào)遞減的函數(shù),再檢驗是否滿足命題中的條件,屬基礎(chǔ)題.15.【解析】

利用相互獨立事件概率的乘法公式即可求解.【詳解】第1次傳播,謠言一定不會回到最初的人;從第2次傳播開始,每1次謠言傳播,第一個制造謠言的人被選中的概率都是,沒有被選中的概率是.次傳播是相互獨立的,故為故答案為:【點睛】本題考查了相互獨立事件概率的乘法公式,考查了考生的分析能力,屬于基礎(chǔ)題.16.【解析】

求出,然后由模的平方轉(zhuǎn)化為向量的平方,利用數(shù)量積的運算計算.【詳解】由題意得,.,.,,.故答案為:.【點睛】本題考查求向量的模,掌握數(shù)量積的定義與運算律是解題基礎(chǔ).本題關(guān)鍵是用數(shù)量積的定義把模的運算轉(zhuǎn)化為數(shù)量積的運算.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ),.(Ⅱ)見解析【解析】

(1)由,分和兩種情況,即可求得數(shù)列的通項公式;(2)由題,得,利用等比數(shù)列求和公式,即可得到本題答案.【詳解】(Ⅰ)解:由題,得當(dāng)時,,得;當(dāng)時,,整理,得.?dāng)?shù)列是以1為首項,2為公比的等比數(shù)列,,;(Ⅱ)證明:由(Ⅰ)知,,故.故得證.【點睛】本題主要考查根據(jù)的關(guān)系式求通項公式以及利用等比數(shù)列的前n項和公式求和并證明不等式,考查學(xué)生的運算求解能力和推理證明能力.18.(1)的極坐標(biāo)方程為;的極坐標(biāo)方程為:(2)【解析】

(1)根據(jù),代入即可轉(zhuǎn)化.(2)由:,可得,代入與的極坐標(biāo)方程求出,從而可得,再利用二倍角公式、輔助角公式,借助三角函數(shù)的性質(zhì)即可求解.【詳解】(1):,,的極坐標(biāo)方程為:,,的極坐標(biāo)方程為:,(2):,則(為銳角),,,,當(dāng)時取等號.【點睛】本題考查了極坐標(biāo)與直角坐標(biāo)的互化、二倍角公式、輔助角公式以及三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.19.(1);(2)見解析.【解析】

(1)根據(jù)題意得出關(guān)于、、的方程組,解出、的值,進而可得出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點、、,設(shè)直線的方程為,將該直線的方程與橢圓的方程聯(lián)立,并列出韋達定理,由向量的坐標(biāo)運算可求得點的坐標(biāo)表達式,并代入韋達定理,消去,可得出點的橫坐標(biāo),進而可得出結(jié)論.【詳解】(1)由題意得,解得,.所以橢圓的方程是;(2)設(shè)直線的方程為,、、,由,得.,則有,,由,得,由,可得,,,綜上,點在定直線上.【點睛】本題考查橢圓方程的求解,同時也考查了點在定直線上的證明,考查計算能力與推理能力,屬于中等題.20.(1)在區(qū)間單調(diào)遞增;(2);(3)證明見解析.【解析】

(1)求出,在定義域內(nèi),再次求導(dǎo),可得在區(qū)間上恒成立,從而可得結(jié)論;(2)由,可得,由可得,聯(lián)立解方程組可得結(jié)果;(3)由(1)知在區(qū)間單調(diào)遞增,可證明,取,可得,而,利用裂項相消法,結(jié)合放縮法可得結(jié)果.【詳解】(1)由已知可得函數(shù)的定義域為,且,令,則有,由,可得,可知當(dāng)x變化時,的變化情況如下表:1-0+極小值,即,可得在區(qū)間單調(diào)遞增;(2)由已知可得函數(shù)的定義域為,且,由已知得,即,①由可得,,②聯(lián)立①②,消去a,可得,③令,則,由(1)知,,故,在區(qū)間單調(diào)遞增,注意到,所以方程③有唯一解,代入①,可得,;(3)證明:由(1)知在區(qū)間單調(diào)遞增,故當(dāng)時,,,可得在區(qū)間單調(diào)遞增,因此,當(dāng)時,,即,亦即,這時,故可得,取,可得,而,故.【點睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及不等式的證明,屬于難題.不等式證明問題是近年高考命題的熱點,利用導(dǎo)數(shù)證明不等主要方法有兩個,一是比較簡單的不等式證明,不等式兩邊作差構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出函數(shù)的最值即可;二是較為綜合的不等式證明,要觀察不等式特點,結(jié)合已解答的問題把要證的不等式變形,并運用已證結(jié)論先行放縮,然后再化簡或者進一步利用導(dǎo)數(shù)證明.21.(1)證明見解析(2)【解析】

(1)根據(jù)面面垂直的判定定理可知,只需證明平面即可.由為菱形可得,連接和與的交點,由等腰三角形性質(zhì)可得,即能證得平面;(2)由題意知,平面,可建立空間直角坐標(biāo)系,以為坐標(biāo)原點,所在直線為軸,所在直線為軸,所在直線為軸,再分別求出平面的法向量,平面的法向量,即可根據(jù)向量法求出二面角的余弦值.【詳解】(1)如圖,設(shè)與相交于點,連接,又為菱形,故,為的中點.又,故.又平面,平面,且,故平面,又平面,所以平面平面.(2)由是等邊三角形,可得,故平面,所以,,兩兩垂直.如圖以為坐標(biāo)原點,所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系.不妨設(shè),則,,則,,,,,,設(shè)為平面的法向量,則即可取,設(shè)為平面的法向量,則即可取,所以.所以二面角的余弦值為0.【點睛】本題主要考查線面垂直的判定定理,面面垂直的判定定理的應(yīng)用,以及利用向量法求二面角,意在考查學(xué)生的直觀想象能力,邏輯推理能力和數(shù)學(xué)運算能力,屬于基礎(chǔ)題.22.(1)詳見解析;(2).【解析】

(1)根據(jù)平面,四邊形是矩形,由為中點,且,利用平面幾何知識,可得,又平面,所以,根據(jù)線面垂直的判定定理可有平面,從

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論