版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
云南省廣南縣二中2025年全國高考招生統(tǒng)一考試考前診斷(一)數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為坐標(biāo)原點,角的終邊經(jīng)過點且,則()A. B. C. D.2.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-33.劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個圓的內(nèi)接正n邊形等分成n個等腰三角形(如圖所示),當(dāng)n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術(shù)的思想,得到的近似值為()A. B. C. D.4.幻方最早起源于我國,由正整數(shù)1,2,3,……,這個數(shù)填入方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形數(shù)陣就叫階幻方.定義為階幻方對角線上所有數(shù)的和,如,則()A.55 B.500 C.505 D.50505.如圖,四邊形為平行四邊形,為中點,為的三等分點(靠近)若,則的值為()A. B. C. D.6.設(shè)是定義域為的偶函數(shù),且在單調(diào)遞增,,則()A. B.C. D.7.在中,“”是“為鈍角三角形”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.既不充分也不必要條件8.已知復(fù)數(shù),,則()A. B. C. D.9.是虛數(shù)單位,則()A.1 B.2 C. D.10.已知集合A,B=,則A∩B=A. B. C. D.11.過雙曲線的右焦點F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經(jīng)過雙曲線C的左頂點,則雙曲線C的離心率為()A. B. C.2 D.12.由曲線y=x2與曲線y2=x所圍成的平面圖形的面積為()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,、的坐標(biāo)分別為,,且滿足,為坐標(biāo)原點,若點的坐標(biāo)為,則的取值范圍為__________.14.《九章算術(shù)》是中國古代的數(shù)學(xué)名著,其中《方田》一章給出了弧田面積的計算公式.如圖所示,弧田是由圓弧AB和其所對弦AB圍成的圖形,若弧田的弧AB長為4π,弧所在的圓的半徑為6,則弧田的弦AB長是__________,弧田的面積是__________.15.將底面直徑為4,高為的圓錐形石塊打磨成一個圓柱,則該圓柱的側(cè)面積的最大值為__________.16.已知函數(shù),則關(guān)于的不等式的解集為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某學(xué)校為了解全校學(xué)生的體重情況,從全校學(xué)生中隨機抽取了100人的體重數(shù)據(jù),得到如下頻率分布直方圖,以樣本的頻率作為總體的概率.(1)估計這100人體重數(shù)據(jù)的平均值和樣本方差;(結(jié)果取整數(shù),同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)(2)從全校學(xué)生中隨機抽取3名學(xué)生,記為體重在的人數(shù),求的分布列和數(shù)學(xué)期望;(3)由頻率分布直方圖可以認為,該校學(xué)生的體重近似服從正態(tài)分布.若,則認為該校學(xué)生的體重是正常的.試判斷該校學(xué)生的體重是否正常?并說明理由.18.(12分)已知函數(shù),.(1)若對于任意實數(shù),恒成立,求實數(shù)的范圍;(2)當(dāng)時,是否存在實數(shù),使曲線:在點處的切線與軸垂直?若存在,求出的值;若不存在,說明理由.19.(12分)在平面直角坐標(biāo)系xOy中,曲線l的參數(shù)方程為(為參數(shù)),以原點O為極點,x軸非負半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為4sin.(1)求曲線C的普通方程;(2)求曲線l和曲線C的公共點的極坐標(biāo).20.(12分)在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面積.21.(12分)已知.(1)求不等式的解集;(2)若存在,使得成立,求實數(shù)的取值范圍22.(10分)已知橢圓的離心率為,且過點.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)是橢圓上且不在軸上的一個動點,為坐標(biāo)原點,過右焦點作的平行線交橢圓于、兩個不同的點,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)三角函數(shù)的定義,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出結(jié)果.【詳解】根據(jù)題意,,解得,所以,所以,所以.故選:C.【點睛】本題考查三角函數(shù)定義的應(yīng)用和二倍角的正弦公式,考查計算能力.2、D【解析】分析:根據(jù)平面向量的數(shù)量積可得,再結(jié)合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數(shù)量積以及投影的應(yīng)用問題,也考查了數(shù)形結(jié)合思想的應(yīng)用問題.3、A【解析】
設(shè)圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當(dāng)時即可為所求.【詳解】由割圓術(shù)可知當(dāng)n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,設(shè)圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當(dāng)時,可得,故選:A【點睛】本題考查三角形面積公式的應(yīng)用,考查閱讀分析能力.4、C【解析】
因為幻方的每行、每列、每條對角線上的數(shù)的和相等,可得,即得解.【詳解】因為幻方的每行、每列、每條對角線上的數(shù)的和相等,所以階幻方對角線上數(shù)的和就等于每行(或每列)的數(shù)的和,又階幻方有行(或列),因此,,于是.故選:C【點睛】本題考查了數(shù)陣問題,考查了學(xué)生邏輯推理,數(shù)學(xué)運算的能力,屬于中檔題.5、D【解析】
使用不同方法用表示出,結(jié)合平面向量的基本定理列出方程解出.【詳解】解:,又解得,所以故選:D【點睛】本題考查了平面向量的基本定理及其意義,屬于基礎(chǔ)題.6、C【解析】
根據(jù)偶函數(shù)的性質(zhì),比較即可.【詳解】解:顯然,所以是定義域為的偶函數(shù),且在單調(diào)遞增,所以故選:C【點睛】本題考查對數(shù)的運算及偶函數(shù)的性質(zhì),是基礎(chǔ)題.7、C【解析】分析:從兩個方向去判斷,先看能推出三角形的形狀是銳角三角形,而非鈍角三角形,從而得到充分性不成立,再看當(dāng)三角形是鈍角三角形時,也推不出成立,從而必要性也不滿足,從而選出正確的結(jié)果.詳解:由題意可得,在中,因為,所以,因為,所以,,結(jié)合三角形內(nèi)角的條件,故A,B同為銳角,因為,所以,即,所以,因此,所以是銳角三角形,不是鈍角三角形,所以充分性不滿足,反之,若是鈍角三角形,也推不出“,故必要性不成立,所以為既不充分也不必要條件,故選D.點睛:該題考查的是有關(guān)充分必要條件的判斷問題,在解題的過程中,需要用到不等式的等價轉(zhuǎn)化,余弦的和角公式,誘導(dǎo)公式等,需要明確對應(yīng)此類問題的解題步驟,以及三角形形狀對應(yīng)的特征.8、B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復(fù)數(shù)問題是高考數(shù)學(xué)中的常考問題,屬于得分題,主要考查的方面有:復(fù)數(shù)的分類、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運算,在運算時注意符號的正、負問題.9、C【解析】
由復(fù)數(shù)除法的運算法則求出,再由模長公式,即可求解.【詳解】由.故選:C.【點睛】本題考查復(fù)數(shù)的除法和模,屬于基礎(chǔ)題.10、A【解析】
先解A、B集合,再取交集。【詳解】,所以B集合與A集合的交集為,故選A【點睛】一般地,把不等式組放在數(shù)軸中得出解集。11、C【解析】
由得F是弦AB的中點.進而得AB垂直于x軸,得,再結(jié)合關(guān)系求解即可【詳解】因為,所以F是弦AB的中點.且AB垂直于x軸.因為以AB為直徑的圓經(jīng)過雙曲線C的左頂點,所以,即,則,故.故選:C【點睛】本題是對雙曲線的漸近線以及離心率的綜合考查,是考查基本知識,屬于基礎(chǔ)題.12、B【解析】
首先求得兩曲線的交點坐標(biāo),據(jù)此可確定積分區(qū)間,然后利用定積分的幾何意義求解面積值即可.【詳解】聯(lián)立方程:可得:,,結(jié)合定積分的幾何意義可知曲線y=x2與曲線y2=x所圍成的平面圖形的面積為:.本題選擇B選項.【點睛】本題主要考查定積分的概念與計算,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由正弦定理可得點在曲線上,設(shè),則,將代入可得,利用二次函數(shù)的性質(zhì)可得范圍.【詳解】解:由正弦定理得,則點在曲線上,設(shè),則,,又,,因為,則,即的取值范圍為.故答案為:.【點睛】本題考查雙曲線的定義,考查向量數(shù)量積的坐標(biāo)運算,考查學(xué)生計算能力,有一定的綜合性,但難度不大.14、612π﹣9【解析】
過作,交于,先求得圓心角的弧度數(shù),然后解解三角形求得的長.利用扇形面積減去三角形的面積,求得弧田的面積.【詳解】∵如圖,弧田的弧AB長為4π,弧所在的圓的半徑為6,過作,交于,根據(jù)圓的幾何性質(zhì)可知,垂直平分.∴α=∠AOB==,可得∠AOD=,OA=6,∴AB=2AD=2OAsin=2×=6,∴弧田的面積S=S扇形OAB﹣S△OAB=4π×6﹣=12π﹣9.故答案為:6,12π﹣9.【點睛】本小題主要考查弓形弦長和弓形面積的計算,考查中國古代數(shù)學(xué)文化,屬于中檔題.15、【解析】
由題意欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,將側(cè)面積表示成關(guān)于的函數(shù),再利用一元二次函數(shù)的性質(zhì)求最值.【詳解】欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,所以.∴,當(dāng)時,的最大值為.故答案為:.【點睛】本題考查圓柱的側(cè)面積的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、,考查空間想象能力和運算求解能力,求解時注意將問題轉(zhuǎn)化為函數(shù)的最值問題.16、【解析】
判斷的奇偶性和單調(diào)性,原不等式轉(zhuǎn)化為,運用單調(diào)性,可得到所求解集.【詳解】令,易知函數(shù)為奇函數(shù),在R上單調(diào)遞增,,即,∴∴,即x>故答案為:【點睛】本題考查函數(shù)的奇偶性和單調(diào)性的運用:解不等式,考查轉(zhuǎn)化思想和運算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)60;25(2)見解析,2.1(3)可以認為該校學(xué)生的體重是正常的.見解析【解析】
(1)根據(jù)頻率分布直方圖可求出平均值和樣本方差;(2)由題意知服從二項分布,分別求出,,,,進而可求出分布列以及數(shù)學(xué)期望;(3)由第一問可知服從正態(tài)分布,繼而可求出的值,從而可判斷.【詳解】解:(1)(2)由已知可得從全校學(xué)生中隨機抽取1人,體重在的概率為0.7.隨機拍取3人,相當(dāng)于3次獨立重復(fù)實驗,隨機交量服從二項分布,則,,,,所以的分布列為:01230.0270.1890.4410.343數(shù)學(xué)期望(3)由題意知服從正態(tài)分布,則,所以可以認為該校學(xué)生的體重是正常的.【點睛】本題考查了由頻率分布直方圖求進行數(shù)據(jù)估計,考查了二項分布,考查了正態(tài)分布.注意,統(tǒng)計類問題,如果題目中沒有特殊說明,則求出數(shù)據(jù)的精度和題目中數(shù)據(jù)的小數(shù)后位數(shù)相同.18、(1);(2)不存在實數(shù),使曲線在點處的切線與軸垂直.【解析】
(1)分類時,恒成立,時,分離參數(shù)為,引入新函數(shù),利用導(dǎo)數(shù)求得函數(shù)最值即可;(2),導(dǎo)出導(dǎo)函數(shù),問題轉(zhuǎn)化為在上有解.再用導(dǎo)數(shù)研究的性質(zhì)可得.【詳解】解:(1)因為當(dāng)時,恒成立,所以,若,為任意實數(shù),恒成立.若,恒成立,即當(dāng)時,,設(shè),,當(dāng)時,,則在上單調(diào)遞增,當(dāng)時,,則在上單調(diào)遞減,所以當(dāng)時,取得最大值.,所以,要使時,恒成立,的取值范圍為.(2)由題意,曲線為:.令,所以,設(shè),則,當(dāng)時,,故在上為增函數(shù),因此在區(qū)間上的最小值,所以,當(dāng)時,,,所以,曲線在點處的切線與軸垂直等價于方程在上有實數(shù)解.而,即方程無實數(shù)解.故不存在實數(shù),使曲線在點處的切線與軸垂直.【點睛】本題考查不等式恒成立,考查用導(dǎo)數(shù)的幾何意義,由導(dǎo)數(shù)幾何把問題進行轉(zhuǎn)化是解題關(guān)鍵.本題屬于困難題.19、(1)(2)(2,).【解析】
(1)利用極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式求解.(2)先把兩個方程均化為普通方程,求解公共點的直角坐標(biāo),然后化為極坐標(biāo)即可.【詳解】(1)∵曲線C的極坐標(biāo)方程為,∴,則,即.(2),∴,聯(lián)立可得,(舍)或,公共點(,3),化為極坐標(biāo)(2,).【點睛】本題主要考查極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化及交點的求解,熟記極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式是求解的關(guān)鍵,交點問題一般是統(tǒng)一一種坐標(biāo)形式求解后再進行轉(zhuǎn)化,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).20、(1);(2).【解析】
(1)由正弦定理化簡已知等式可得sinBcosA﹣sinAsinB=1,結(jié)合sinB>1,可求tanA=,結(jié)合范圍A∈(1,π),可得A的值;(2)由已知可求C=,可求b的值,根據(jù)三角形的面積公式即可計算得解.【詳解】(1)∵bcosA﹣asinB=1.∴由正弦定理可得:sinBcosA﹣s
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年泉州幼兒師范高等專科學(xué)校公開招聘編制內(nèi)碩士研究生工作人員備考題庫及一套答案詳解
- 2026年訥河市人民醫(yī)院招聘備考題庫完整答案詳解
- 2026年蘇州工業(yè)園區(qū)蓮花學(xué)校行政輔助人員招聘備考題庫附答案詳解
- 北川羌族自治縣人民檢察院2025年公開招聘聘用制書記員備考題庫及答案詳解一套
- 2026年重慶國創(chuàng)輕合金研究院有限公司招聘備考題庫及一套參考答案詳解
- 2026年雅安市名山區(qū)人民法院公開招聘勞務(wù)派遣人員9人的備考題庫附答案詳解
- 企業(yè)檔案歸檔與保管制度
- 中學(xué)學(xué)生家長委員會制度
- 養(yǎng)老院員工培訓(xùn)制度
- 2026年江孜縣委社會工作部關(guān)于公開招聘社區(qū)工作者的備考題庫及答案詳解一套
- 2025至2030中國紅霉素行業(yè)市場深度研究與戰(zhàn)略咨詢分析報告
- 2026年內(nèi)蒙古北方職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測試備考題庫帶答案解析
- 2025至2030數(shù)字PCR和實時PCR(qPCR)行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2026屆廣東省廣州市高三上學(xué)期12月零模歷史試題含答案
- 2026年汽車租賃安全生產(chǎn)管理制度模版
- 2026貴州安順市平壩區(qū)糧油收儲經(jīng)營有限公司招聘5人筆試備考試題及答案解析
- 開工第一課安全培訓(xùn)課件
- 急診成人社區(qū)獲得性肺炎臨床實踐指南(2024年版)解讀課件
- 華東理工大學(xué)2026年公開招聘工作人員46名備考題庫及答案詳解(新)
- 管道試壓專項施工方案
- 2025-2030中國固定電話行業(yè)市場深度調(diào)研及發(fā)展趨勢和投資前景預(yù)測研究報告
評論
0/150
提交評論