2025屆北京東城55中學(xué)高三下第二次大考數(shù)學(xué)試題_第1頁
2025屆北京東城55中學(xué)高三下第二次大考數(shù)學(xué)試題_第2頁
2025屆北京東城55中學(xué)高三下第二次大考數(shù)學(xué)試題_第3頁
2025屆北京東城55中學(xué)高三下第二次大考數(shù)學(xué)試題_第4頁
2025屆北京東城55中學(xué)高三下第二次大考數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆北京東城55中學(xué)高三下第二次大考數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等差數(shù)列中,,,則數(shù)列前6項和為()A.18 B.24 C.36 D.722.函數(shù)的最大值為,最小正周期為,則有序數(shù)對為()A. B. C. D.3.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.4.學(xué)業(yè)水平測試成績按照考生原始成績從高到低分為、、、、五個等級.某班共有名學(xué)生且全部選考物理、化學(xué)兩科,這兩科的學(xué)業(yè)水平測試成績?nèi)鐖D所示.該班學(xué)生中,這兩科等級均為的學(xué)生有人,這兩科中僅有一科等級為的學(xué)生,其另外一科等級為,則該班()A.物理化學(xué)等級都是的學(xué)生至多有人B.物理化學(xué)等級都是的學(xué)生至少有人C.這兩科只有一科等級為且最高等級為的學(xué)生至多有人D.這兩科只有一科等級為且最高等級為的學(xué)生至少有人5.已知是虛數(shù)單位,若,則()A. B.2 C. D.36.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,且.若,的面積為,則()A.5 B. C.4 D.167.函數(shù)的圖象可能為()A. B.C. D.8.已知雙曲線的一個焦點為,且與雙曲線的漸近線相同,則雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.9.設(shè)函數(shù)恰有兩個極值點,則實數(shù)的取值范圍是()A. B.C. D.10.函數(shù)的圖像大致為()A. B.C. D.11.已知排球發(fā)球考試規(guī)則:每位考生最多可發(fā)球三次,若發(fā)球成功,則停止發(fā)球,否則一直發(fā)到次結(jié)束為止.某考生一次發(fā)球成功的概率為,發(fā)球次數(shù)為,若的數(shù)學(xué)期望,則的取值范圍為()A. B. C. D.12.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓C:1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,橢圓的焦距為2c,過C外一點P(c,2c)作線段PF1,PF2分別交橢圓C于點A、B,若|PA|=|AF1|,則_____.14.我國著名的數(shù)學(xué)家秦九韶在《數(shù)書九章》提出了“三斜求積術(shù)”.他把三角形的三條邊分別稱為小斜、中斜和大斜.三斜求積術(shù)就是用小斜平方加上大斜平方,送到中斜平方,取相減后余數(shù)的一半,自乘而得一個數(shù),小斜平方乘以大斜平方,送到上面得到的那個數(shù),相減后余數(shù)被4除,所得的數(shù)作為“實”,1作為“隅”,開平方后即得面積.所謂“實”、“隅”指的是在方程中,p為“隅”,q為“實”.即若的大斜、中斜、小斜分別為a,b,c,則.已知點D是邊AB上一點,,,,,則的面積為________.15.在中,角的對邊分別為,且,若外接圓的半徑為,則面積的最大值是______.16.隨著國力的發(fā)展,人們的生活水平越來越好,我國的人均身高較新中國成立初期有大幅提高.為了掌握學(xué)生的體質(zhì)與健康現(xiàn)狀,合理制定學(xué)校體育衛(wèi)生工作發(fā)展規(guī)劃,某市進行了一次全市高中男生身高統(tǒng)計調(diào)查,數(shù)據(jù)顯示全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,那么該市身高高于的高中男生人數(shù)大約為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)f(x)=x-2a-x-a(Ⅰ)若f(1)>1,求a的取值范圍;(Ⅱ)若a<0,對?x,y∈-∞,a,都有不等式f(x)≤(y+2020)+18.(12分)已知橢圓:()的左、右頂點分別為、,焦距為2,點為橢圓上異于、的點,且直線和的斜率之積為.(1)求的方程;(2)設(shè)直線與軸的交點為,過坐標(biāo)原點作交橢圓于點,試探究是否為定值,若是,求出該定值;若不是,請說明理由.19.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大?。唬?)若△ABC外接圓的半徑為,求△ABC面積的最大值.20.(12分)已知函數(shù),.(1)求的值;(2)令在上最小值為,證明:.21.(12分)已知數(shù)列滿足:對一切成立.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.22.(10分)改革開放40年,我國經(jīng)濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調(diào)查.隨機抽取男女駕駛員各50人,進行問卷測評,所得分?jǐn)?shù)的頻率分布直方圖如圖所示.規(guī)定得分在80分以上為交通安全意識強.安全意識強安全意識不強合計男性女性合計(Ⅰ)求的值,并估計該城市駕駛員交通安全意識強的概率;(Ⅱ)已知交通安全意識強的樣本中男女比例為4:1,完成2×2列聯(lián)表,并判斷有多大把握認(rèn)為交通安全意識與性別有關(guān);(Ⅲ)在(Ⅱ)的條件下,從交通安全意識強的駕駛員中隨機抽取2人,求抽到的女性人數(shù)的分布列及期望.附:,其中0.0100.0050.0016.6357.87910.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

由等差數(shù)列的性質(zhì)可得,根據(jù)等差數(shù)列的前項和公式可得結(jié)果.【詳解】∵等差數(shù)列中,,∴,即,∴,故選C.【點睛】本題主要考查了等差數(shù)列的性質(zhì)以及等差數(shù)列的前項和公式的應(yīng)用,屬于基礎(chǔ)題.2.B【解析】函數(shù)(為輔助角)∴函數(shù)的最大值為,最小正周期為故選B3.C【解析】

由題意可得面,可知,因為,則面,于是.由此推出三棱錐外接球球心是的中點,進而算出,外接球半徑為1,得出結(jié)果.【詳解】解:由,翻折后得到,又,則面,可知.又因為,則面,于是,因此三棱錐外接球球心是的中點.計算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點睛】本題主要考查簡單的幾何體、球的表面積等基礎(chǔ)知識;考查空間想象能力、推理論證能力、運算求解能力及創(chuàng)新意識,屬于中檔題.4.D【解析】

根據(jù)題意分別計算出物理等級為,化學(xué)等級為的學(xué)生人數(shù)以及物理等級為,化學(xué)等級為的學(xué)生人數(shù),結(jié)合表格中的數(shù)據(jù)進行分析,可得出合適的選項.【詳解】根據(jù)題意可知,名學(xué)生減去名全和一科為另一科為的學(xué)生人(其中物理化學(xué)的有人,物理化學(xué)的有人),表格變?yōu)椋何锢砘瘜W(xué)對于A選項,物理化學(xué)等級都是的學(xué)生至多有人,A選項錯誤;對于B選項,當(dāng)物理和,化學(xué)都是時,或化學(xué)和,物理都是時,物理、化學(xué)都是的人數(shù)最少,至少為(人),B選項錯誤;對于C選項,在表格中,除去物理化學(xué)都是的學(xué)生,剩下的都是一科為且最高等級為的學(xué)生,因為都是的學(xué)生最少人,所以一科為且最高等級為的學(xué)生最多為(人),C選項錯誤;對于D選項,物理化學(xué)都是的最多人,所以兩科只有一科等級為且最高等級為的學(xué)生最少(人),D選項正確.故選:D.【點睛】本題考查合情推理,考查推理能力,屬于中等題.5.A【解析】

直接將兩邊同時乘以求出復(fù)數(shù),再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A【點睛】考查復(fù)數(shù)的運算及其模的求法,是基礎(chǔ)題.6.C【解析】

根據(jù)正弦定理邊化角以及三角函數(shù)公式可得,再根據(jù)面積公式可求得,再代入余弦定理求解即可.【詳解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故選:C【點睛】本題主要考查了解三角形中正余弦定理與面積公式的運用,屬于中檔題.7.C【解析】

先根據(jù)是奇函數(shù),排除A,B,再取特殊值驗證求解.【詳解】因為,所以是奇函數(shù),故排除A,B,又,故選:C【點睛】本題主要考查函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎(chǔ)題.8.B【解析】

根據(jù)焦點所在坐標(biāo)軸和漸近線方程設(shè)出雙曲線的標(biāo)準(zhǔn)方程,結(jié)合焦點坐標(biāo)求解.【詳解】∵雙曲線與的漸近線相同,且焦點在軸上,∴可設(shè)雙曲線的方程為,一個焦點為,∴,∴,故的標(biāo)準(zhǔn)方程為.故選:B【點睛】此題考查根據(jù)雙曲線的漸近線和焦點求解雙曲線的標(biāo)準(zhǔn)方程,易錯點在于漏掉考慮焦點所在坐標(biāo)軸導(dǎo)致方程形式出錯.9.C【解析】

恰有兩個極值點,則恰有兩個不同的解,求出可確定是它的一個解,另一個解由方程確定,令通過導(dǎo)數(shù)判斷函數(shù)值域求出方程有一個不是1的解時t應(yīng)滿足的條件.【詳解】由題意知函數(shù)的定義域為,.因為恰有兩個極值點,所以恰有兩個不同的解,顯然是它的一個解,另一個解由方程確定,且這個解不等于1.令,則,所以函數(shù)在上單調(diào)遞增,從而,且.所以,當(dāng)且時,恰有兩個極值點,即實數(shù)的取值范圍是.故選:C【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,函數(shù)與方程的應(yīng)用,屬于中檔題.10.A【解析】

根據(jù)排除,,利用極限思想進行排除即可.【詳解】解:函數(shù)的定義域為,恒成立,排除,,當(dāng)時,,當(dāng),,排除,故選:.【點睛】本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)值的符號以及極限思想是解決本題的關(guān)鍵,屬于基礎(chǔ)題.11.A【解析】

根據(jù)題意,分別求出再根據(jù)離散型隨機變量期望公式進行求解即可【詳解】由題可知,,,則解得,由可得,答案選A【點睛】本題考查離散型隨機變量期望的求解,易錯點為第三次發(fā)球分為兩種情況:三次都不成功、第三次成功12.C【解析】

根據(jù)三視圖作出幾何體的直觀圖,結(jié)合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點睛】本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)條件可得判斷OA∥PF2,且|PF2|=2|OA|,從而得到點A為橢圓上頂點,則有b=c,解出B的坐標(biāo)即可得到比值.【詳解】因為|PA|=|AF1|,所以點A是線段PF1的中點,又因為點O為線段F1F2的中點,所以O(shè)A∥PF2,且|PF2|=2|OA|,因為點P(c,2c),所以PF2⊥x軸,則|PF2|=2c,所以O(shè)A⊥x軸,則點A為橢圓上頂點,所以|OA|=b,則2b=2c,所以b=c,ac,設(shè)B(c,m)(m>0),則,解得mc,所以|BF2|c,則.故答案為:2.【點睛】本題考查橢圓的基本性質(zhì),考查直線位置關(guān)系的判斷,方程思想,屬于中檔題.14..【解析】

利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求積術(shù)”公式即可求得答案.【詳解】,所以,由余弦定理可知,得.根據(jù)“三斜求積術(shù)”可得,所以.【點睛】本題考查正切的和角公式,同角三角函數(shù)的基本關(guān)系式,余弦定理的應(yīng)用,考查學(xué)生分析問題的能力和計算整理能力,難度較易.15.【解析】

由正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡已知等式,結(jié)合范圍可求的值,利用正弦定理可求的值,進而根據(jù)余弦定理,基本不等式可求的最大值,進而根據(jù)三角形的面積公式即可求解.【詳解】解:,由正弦定理可得:,,,又,,,即,可得:,外接圓的半徑為,,解得,由余弦定理,可得,又,(當(dāng)且僅當(dāng)時取等號),即最大值為4,面積的最大值為.故答案為:.【點睛】本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,余弦定理,基本不等式,三角形的面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.16.3000【解析】

根據(jù)正態(tài)曲線的對稱性求出,進而可求出身高高于的高中男生人數(shù).【詳解】解:全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,則,該市身高高于的高中男生人數(shù)大約為.故答案為:.【點睛】本題考查正態(tài)曲線的對稱性的應(yīng)用,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(-∞,-1)∪(1,+∞);(Ⅱ)-1010,0.【解析】

(Ⅰ)由題意不等式化為|1-2a|-|1-a|>1,利用分類討論法去掉絕對值求出不等式的解集即可;(Ⅱ)由題意把問題轉(zhuǎn)化為[f(x)]max≤[|y+2020|+|y-a|]min,分別求出【詳解】(Ⅰ)由題意知,f(1)=|1-2a|-|1-a|>1,若a≤12,則不等式化為1-2a-1+a>1,解得若12<a<1,則不等式化為2a-1-(1-a)>1,解得若a≥1,則不等式化為2a-1+1-a>1,解得a>1,綜上所述,a的取值范圍是(-∞,-1)∪(1,+∞);(Ⅱ)由題意知,要使得不等式f(x)≤|(y+2020)|+|y-a|恒成立,只需[f(x)]max當(dāng)x∈(-∞,a]時,|x-2a|-|x-a|≤-a,[f(x)]max因為|y+2020|+|y-a|≥|a+2020|,所以當(dāng)(y+2020)(y-a)≤0時,[|y+2020|+|y-a|]min即-a≤|a+2020|,解得a≥-1010,結(jié)合a<0,所以a的取值范圍是[-1010,0).【點睛】本題考查了絕對值不等式的求解問題,含有絕對值的不等式恒成立應(yīng)用問題,以及絕對值三角不等式的應(yīng)用,考查了分類討論思想,是中檔題.含有絕對值的不等式恒成立應(yīng)用問題,關(guān)鍵是等價轉(zhuǎn)化為最值問題,再通過絕對值三角不等式求解最值,從而建立不等關(guān)系,求出參數(shù)范圍.18.(1)(2)是定值,且定值為2【解析】

(1)設(shè)出點坐標(biāo)并代入橢圓方程,根據(jù)列方程,求得的值,結(jié)合求得的值,進而求得橢圓的方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,求得點的橫坐標(biāo),聯(lián)立直線的方程和橢圓方程,求得,由此化簡求得為定值.【詳解】(1)已知點在橢圓:()上,可設(shè),即,又,且,可得橢圓的方程為.(2)設(shè)直線的方程為:,則直線的方程為.聯(lián)立直線與橢圓的方程可得:,由,可得,聯(lián)立直線與橢圓的方程可得:,即,即.即為定值,且定值為2.【點睛】本小題主要考查本小題主要考查橢圓方程的求法,考查橢圓中的定值問題的求解,考查直線和橢圓的位置關(guān)系,考查運算求解能力,屬于中檔題.19.(1)B(2)【解析】

(1)由已知結(jié)合余弦定理,正弦定理及和兩角和的正弦公式進行化簡可求cosB,進而可求B;(2)由已知結(jié)合正弦定理,余弦定理及基本不等式即可求解ac的范圍,然后結(jié)合三角形的面積公式即可求解.【詳解】(1)因為b(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,因為,所以,所以B;(2)由正弦定理可得,b=2RsinB2,由余弦定理可得,b2=a2+c2﹣2accosB,即a2+c2﹣ac=4,因為a2+c2≥2ac,所以4=a2+c2﹣ac≥ac,當(dāng)且僅當(dāng)a=c時取等號,即ac的最大值4,所以△ABC面積S即面積的最大值.【點睛】本題綜合考查了正弦定理,余弦定理及三角形的面積公式在求解三角形中的應(yīng)用,屬于中檔題.20.(1);(2)見解析.【解析】

(1)將轉(zhuǎn)化為對任意恒成立,令,故只需,即可求出的值;(2)由(1)知,可得,令,可證,使得,從而可確定在上單調(diào)遞減,在上單調(diào)遞增,進而可得,即,即可證出.【詳

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論