版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第二講
回歸分析例、習(xí)題2/23/20252/24/20251統(tǒng)計(jì)工具箱中的回歸分析命令1、多元線性回歸2、多項(xiàng)式回歸3、非線性回歸4、逐步回歸2/23/20252/24/20252多元線性回歸
b=regress(Y,X)1、確定回歸系數(shù)的點(diǎn)估計(jì)值:2/23/20252/24/202533、畫(huà)出殘差及其置信區(qū)間:rcoplot〔r,rint〕2、求回歸系數(shù)的點(diǎn)估計(jì)和區(qū)間估計(jì)、并檢驗(yàn)回歸模型:
[b,bint,r,rint,stats]=regress(Y,X,alpha)回歸系數(shù)的區(qū)間估計(jì)殘差用于檢驗(yàn)回歸模型的統(tǒng)計(jì)量,有三個(gè)數(shù)值:相關(guān)系數(shù)r2、F值、與F對(duì)應(yīng)的概率p置信區(qū)間顯著性水平(缺省時(shí)為0.05)2/23/20252/24/20254例1測(cè)16名成年女子的身高與腿長(zhǎng)所得數(shù)據(jù)如下:以身高x為橫坐標(biāo),以腿長(zhǎng)y為縱坐標(biāo)將這些數(shù)據(jù)點(diǎn)〔xI,yi〕在平面直角坐標(biāo)系上標(biāo)出.散點(diǎn)圖2/23/20252/24/20255例1解:1、輸入數(shù)據(jù):x=[143145146147149150153154155156157158159160162164]';X=[ones(16,1)x];Y=[8885889192939395969897969899100102]';2、回歸分析及檢驗(yàn):[b,bint,r,rint,stats]=regress(Y,X)b,bint,statsToMATLAB(liti11)2/23/20252/24/202563、殘差分析,作殘差圖:rcoplot(r,rint)從殘差圖可以看出,除第二個(gè)數(shù)據(jù)外,其余數(shù)據(jù)的殘差離零點(diǎn)均較近,且殘差的置信區(qū)間均包含零點(diǎn),這說(shuō)明回歸模型y=-16.073+0.7194x能較好的符合原始數(shù)據(jù),而第二個(gè)數(shù)據(jù)可視為異常點(diǎn).4、預(yù)測(cè)及作圖:z=b(1)+b(2)*xplot(x,Y,'k+',x,z,'r')ToMATLAB(liti12)2/23/20252/24/20257多項(xiàng)式回歸〔一〕一元多項(xiàng)式回歸(1)確定多項(xiàng)式系數(shù)的命令:[p,S]=polyfit(x,y,m)(2)一元多項(xiàng)式回歸命令:polytool(x,y,m)1、回歸:y=a1xm+a2xm-1+…+amx+am+12、預(yù)測(cè)和預(yù)測(cè)誤差估計(jì):(1)Y=polyval(p,x)求polyfit所得的回歸多項(xiàng)式在x處的預(yù)測(cè)值Y;(2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit所得的回歸多項(xiàng)式在x處的預(yù)測(cè)值Y及預(yù)測(cè)值的顯著性為1-alpha的置信區(qū)間YDELTA;alpha缺省時(shí)為0.5.2/23/20252/24/20258法一直接作二次多項(xiàng)式回歸:t=1/30:1/30:14/30;s=[11.8615.6720.6026.6933.7141.9351.1361.4972.9085.4499.08113.77129.54146.48];
[p,S]=polyfit(t,s,2)ToMATLAB〔liti21〕得回歸模型為:2/23/20252/24/20259法二化為多元線性回歸:t=1/30:1/30:14/30;s=[11.8615.6720.6026.6933.7141.9351.1361.4972.9085.4499.08113.77129.54146.48];T=[ones(14,1)t'(t.^2)'];[b,bint,r,rint,stats]=regress(s',T);b,statsToMATLAB(liti22)得回歸模型為:Y=polyconf(p,t,S)plot(t,s,'k+',t,Y,'r')預(yù)測(cè)及作圖ToMATLAB(liti23)2/23/20252/24/202510〔二〕多元二項(xiàng)式回歸命令:rstool〔x,y,’model’,alpha〕nm矩陣顯著性水平(缺省時(shí)為0.05)n維列向量2/23/20252/24/202511例3設(shè)某商品的需求量與消費(fèi)者的平均收入、商品價(jià)格的統(tǒng)計(jì)數(shù)據(jù)如下,建立回歸模型,預(yù)測(cè)平均收入為1000、價(jià)格為6時(shí)的商品需求量.法一直接用多元二項(xiàng)式回歸:x1=[10006001200500300400130011001300300];x2=[5766875439];y=[10075807050659010011060]';x=[x1'x2'];rstool(x,y,'purequadratic')2/23/20252/24/202512在畫(huà)面左下方的下拉式菜單中選〞all〞,那么beta、rmse和residuals都傳送到Matlab工作區(qū)中.在左邊圖形下方的方框中輸入1000,右邊圖形下方的方框中輸入6。那么畫(huà)面左邊的“PredictedY〞下方的數(shù)據(jù)變?yōu)?8.47981,即預(yù)測(cè)出平均收入為1000、價(jià)格為6時(shí)的商品需求量為88.4791.2/23/20252/24/202513在Matlab工作區(qū)中輸入命令:beta,rmseToMATLAB(liti31)2/23/20252/24/202514結(jié)果為:b=110.53130.1464-26.5709-0.00011.8475stats=0.970240.66560.0005法二ToMATLAB(liti32)返回將化為多元線性回歸:2/23/20252/24/202515非線性回歸〔1〕確定回歸系數(shù)的命令:[beta,r,J]=nlinfit〔x,y,’model’,beta0〕〔2〕非線性回歸命令:nlintool〔x,y,’model’,beta0,alpha〕1、回歸:殘差Jacobian矩陣回歸系數(shù)的初值是事先用m-文件定義的非線性函數(shù)估計(jì)出的回歸系數(shù)輸入數(shù)據(jù)x、y分別為矩陣和n維列向量,對(duì)一元非線性回歸,x為n維列向量。2、預(yù)測(cè)和預(yù)測(cè)誤差估計(jì):[Y,DELTA]=nlpredci(’model’,x,beta,r,J)求nlinfit或nlintool所得的回歸函數(shù)在x處的預(yù)測(cè)值Y及預(yù)測(cè)值的顯著性為1-alpha的置信區(qū)間YDELTA.2/23/20252/24/2025162/23/20252/24/202517散點(diǎn)圖此即非線性回歸或曲線回歸問(wèn)題〔需要配曲線〕配曲線的一般方法是:2/23/20252/24/202518通常選擇的六類(lèi)曲線如下:返回2/23/20252/24/2025192、輸入數(shù)據(jù):x=2:16;y=[6.428.209.589.59.7109.939.9910.4910.5910.6010.8010.6010.9010.76];beta0=[82]';3、求回歸系數(shù):[beta,r,J]=nlinfit(x',y','volum',beta0);beta得結(jié)果:beta=11.6036-1.0641即得回歸模型為:ToMATLAB(liti41)2/23/20252/24/2025204、預(yù)測(cè)及作圖:[YY,delta]=nlpredci('volum',x',beta,r,J);plot(x,y,'k+',x,YY,'r')ToMATLAB(liti42)2/23/20252/24/2025212/23/20252/24/2025221.
對(duì)回歸模型建立M文件model.m如下:functionyy=model(beta0,X)a=beta0(1);b=beta0(2);c=beta0(3);d=beta0(4);e=beta0(5);f=beta0(6);x1=X(:,1);x2=X(:,2);x3=X(:,3);x4=X(:,4);x5=X(:,5);x6=X(:,6);yy=a*x1+b*x2+c*x3+d*x4+e*x5+f*x6;
2/23/20252/24/2025232.
主程序liti6.m如下:X=[598.00349.00461.0057482.0020729.0044.00…………..2927.006862.001273.00100072.043280.00496.00];y=[184.00216.00248.00254.00268.00286.00357.00444.00506.00...271.00230.00266.00323.00393.00466.00352.00303.00447.00...564.00638.00658.00691.00655.00692.00657.00723.00922.00...890.00826.00810.0]';beta0=[0.50-0.03-0.600.01-0.020.35];betafit=nlinfit(X,y,'model',beta0)ToMATLAB(liti6〕2/23/20252/24/202524betafit=0.5243-0.0294-0.63040.0112-0.02300.3658即y=0.5243x1-0.0294x2-0.6304x3+0.0112x4-0.0230x5+0.3658x6結(jié)果為:2/23/20252/24/202525逐步回歸逐步回歸的命令是:stepwise〔x,y,inmodel,alpha〕運(yùn)行stepwise命令時(shí)產(chǎn)生三個(gè)圖形窗口:StepwisePlot,StepwiseTable,StepwiseHistory.在StepwisePlot窗口,顯示出各項(xiàng)的回歸系數(shù)及其置信區(qū)間.StepwiseTable窗口中列出了一個(gè)統(tǒng)計(jì)表,包括回歸系數(shù)及其置信區(qū)間,以及模型的統(tǒng)計(jì)量剩余標(biāo)準(zhǔn)差〔RMSE〕、相關(guān)系數(shù)〔R-square〕、F值、與F對(duì)應(yīng)的概率P.矩陣的列數(shù)的指標(biāo),給出初始模型中包括的子集(缺省時(shí)設(shè)定為全部自變量)顯著性水平(缺省時(shí)為0.5)自變量數(shù)據(jù),階矩陣因變量數(shù)據(jù),階矩陣2/23/20252/24/202526例6水泥凝固時(shí)放出的熱量y與水泥中4種化學(xué)成分x1、x2、x3、x4
有關(guān),今測(cè)得一組數(shù)據(jù)如下,試用逐步回歸法確定一個(gè)線性模型.1、數(shù)據(jù)輸入:x1=[7111117113122111110]';x2=[26295631525571315447406668]';x3=[615886917221842398]';x4=[6052204733226442226341212]';y=[78.574.3104.387.695.9109.2102.772.593.1115.983.8113.3109.4]';x=[x1x2x3x4];2/23/20252/24/2025272、逐步回歸:〔1〕先在初始模型中取全部自變量:stepwise(x,y)得圖StepwisePlot和表StepwiseTable圖StepwisePlot中四條直線都是虛線,說(shuō)明模型的顯著性不好從表StepwiseTable中看出變量x3和x4的顯著性最差.2/23/20252/24/202528〔2〕在圖StepwisePlot中點(diǎn)擊直線3和直線4,移去變量
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能物聯(lián)網(wǎng)面試題目及答案
- 運(yùn)行協(xié)同制度
- 2026年及未來(lái)5年市場(chǎng)數(shù)據(jù)中國(guó)甘肅省文旅行業(yè)市場(chǎng)深度分析及發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 路燈管護(hù)制度
- 試論我國(guó)離婚經(jīng)濟(jì)補(bǔ)償制度
- 行政處罰案件預(yù)警制度
- 2025年泰安下半年事業(yè)編考試及答案
- 2025年建行24年校招筆試及答案
- 2025年豪森PV筆試及答案
- 2025年天津文職考試筆試題及答案
- 南京市五校聯(lián)盟2024-2025學(xué)年高二上學(xué)期期末考試英語(yǔ)試卷(含答案詳解)
- 云南省昆明市五華區(qū)2024-2025學(xué)年高一上學(xué)期1月期末考試地理試題(解析版)
- 人教部編版五年級(jí)語(yǔ)文上冊(cè)1-8單元習(xí)作作文范文 寫(xiě)作指導(dǎo)
- (人教版)地理七年級(jí)下冊(cè)填圖訓(xùn)練及重點(diǎn)知識(shí)
- 二十四點(diǎn)大全
- TB-T 3263.1-2023 動(dòng)車(chē)組座椅 第1部分:一等座椅和二等座椅
- 延遲焦化操作工(中級(jí))考試(題庫(kù)版)
- 《研學(xué)旅行課程設(shè)計(jì)》課件-理解研學(xué)課程設(shè)計(jì)內(nèi)涵
- AQT 1089-2020 煤礦加固煤巖體用高分子材料
- 鄭氏規(guī)范全文及譯文
- 中國(guó)泌尿外科圍手術(shù)期血栓預(yù)防與管理專(zhuān)家共識(shí)
評(píng)論
0/150
提交評(píng)論