萊蕪市重點中學2024-2025學年初三下-期中統(tǒng)一考試數學試題試卷含解析_第1頁
萊蕪市重點中學2024-2025學年初三下-期中統(tǒng)一考試數學試題試卷含解析_第2頁
萊蕪市重點中學2024-2025學年初三下-期中統(tǒng)一考試數學試題試卷含解析_第3頁
萊蕪市重點中學2024-2025學年初三下-期中統(tǒng)一考試數學試題試卷含解析_第4頁
萊蕪市重點中學2024-2025學年初三下-期中統(tǒng)一考試數學試題試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

萊蕪市重點中學2024-2025學年初三下-期中統(tǒng)一考試數學試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列說法中正確的是()A.檢測一批燈泡的使用壽命適宜用普查.B.拋擲一枚均勻的硬幣,正面朝上的概率是,如果拋擲10次,就一定有5次正面朝上.C.“367人中有兩人是同月同日生”為必然事件.D.“多邊形內角和與外角和相等”是不可能事件.2.的相反數是()A. B. C.3 D.-33.在Rt△ABC中,∠C=90°,AB=4,AC=1,則cosB的值為()A. B. C. D.4.下面的圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.B.C.D.5.我國古代數學名著《孫子算經》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設大馬有匹,小馬有匹,則可列方程組為()A. B.C. D.6.下列圖形中,主視圖為①的是()A. B. C. D.7.若一次函數y=(2m﹣3)x﹣1+m的圖象不經過第三象限,則m的取值范圖是()A.1<m< B.1≤m< C.1<m≤ D.1≤m≤8.如圖,直線AB∥CD,∠A=70°,∠C=40°,則∠E等于()A.30° B.40°C.60° D.70°9.計算4×(–9)的結果等于A.32 B.–32 C.36 D.–3610.如圖,將一塊含有30°角的直角三角板的兩個頂點放在長方形直尺的一組對邊上,如果∠1=30°,那么∠2的度數為()A.30° B.40° C.50° D.60°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標系中,點P的坐標為(0,4),直線y=x-3與x軸、y軸分別交于點A、B,點M是直線AB上的一個動點,則PM的最小值為________.12.如圖,已知△ABC中,AB=AC=5,BC=8,將△ABC沿射線BC方向平移m個單位得到△DEF,頂點A,B,C分別與D,E,F(xiàn)對應,若以A,D,E為頂點的三角形是等腰三角形,且AE為腰,則m的值是______.13.如圖,若∠1+∠2=180°,∠3=110°,則∠4=.14.經過三邊都不相等的三角形的一個頂點的線段把三角形分成兩個小三角形,如果其中一個是等腰三角形,另外一個三角形和原三角形相似,那么把這條線段定義為原三角形的“和諧分割線”.如圖,線段CD是△ABC的“和諧分割線”,△ACD為等腰三角形,△CBD和△ABC相似,∠A=46°,則∠ACB的度數為_____.15.若一個三角形兩邊的垂直平分線的交點在第三邊上,則這個三角形是_____三角形.16.如圖,邊長為6的菱形ABCD中,AC是其對角線,∠B=60°,點P在CD上,CP=2,點M在AD上,點N在AC上,則△PMN的周長的最小值為_____________.三、解答題(共8題,共72分)17.(8分)已知A=ab(a-b)-ba(a-b).化簡A;如果a、b18.(8分)某校團委為研究該校學生的課余活動情況,采取抽樣調查的方法,從閱讀、運動、娛樂、其他等四個方面調查了若干名學生的興趣愛好,并將調查的結果繪制了如下的兩幅不完整的統(tǒng)計圖,請你根據圖中提供的信息解答下列各題:(1)在這次研究中,一共調查了多少名學生?(2)“其他”在扇形統(tǒng)計圖中所占的圓心角是多少度?(3)補全頻數分布直方圖;(4)該校共有3200名學生,請你估計一下全校大約有多少學生課余愛好是閱讀.19.(8分)如圖,點G是正方形ABCD對角線CA的延長線一點,對角線BD與AC交于點O,以線段AG為邊作一個正方形AEFG,連接EB、GD.(1)求證:EB=GD;(2)若AB=5,AG=2,求EB的長.20.(8分)在數學課上,老師提出如下問題:小楠同學的作法如下:老師說:“小楠的作法正確.”請回答:小楠的作圖依據是______________________________________________.21.(8分)某小學為了了解學生每天完成家庭作業(yè)所用時間的情況,從每班抽取相同數量的學生進行調查,并將所得數據進行整理,制成條形統(tǒng)計圖和扇形統(tǒng)計圖如下:補全條形統(tǒng)計圖;求扇形統(tǒng)計圖扇形D的圓心角的度數;若該中學有2000名學生,請估計其中有多少名學生能在1.5小時內完成家庭作業(yè)?22.(10分)某校為了開闊學生的視野,積極組織學生參加課外讀書活動.“放飛夢想”讀書小組協(xié)助老師隨機抽取本校的部分學生,調查他們最喜愛的圖書類別(圖書分為文學類、藝體類、科普類、其他等四類),并將調查結果繪制成如下兩幅不完整的統(tǒng)計圖,請你結合圖中的信息解答下列問題:求被調查的學生人數;補全條形統(tǒng)計圖;已知該校有1200名學生,估計全校最喜愛文學類圖書的學生有多少人?23.(12分)已知:不等式≤2+x(1)求不等式的解;(2)若實數a滿足a>2,說明a是否是該不等式的解.24.如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作發(fā)現(xiàn)如圖1,固定△ABC,使△DEC繞點C旋轉.當點D恰好落在BC邊上時,填空:線段DE與AC的位置關系是;②設△BDC的面積為S1,△AEC的面積為S1.則S1與S1的數量關系是.猜想論證當△DEC繞點C旋轉到圖3所示的位置時,小明猜想(1)中S1與S1的數量關系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想.拓展探究已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,OE∥AB交BC于點E(如圖4),若在射線BA上存在點F,使S△DCF=S△BDC,請直接寫出相應的BF的長

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】【分析】根據相關的定義(調查方式,概率,可能事件,必然事件)進行分析即可.【詳解】A.檢測一批燈泡的使用壽命不適宜用普查,因為有破壞性;B.拋擲一枚均勻的硬幣,正面朝上的概率是,如果拋擲10次,就可能有5次正面朝上,因為這是隨機事件;C.“367人中有兩人是同月同日生”為必然事件.因為一年只有365天或366天,所以367人中至少有兩個日子相同;D.“多邊形內角和與外角和相等”是可能事件.如四邊形內角和和外角和相等.故正確選項為:C【點睛】本題考核知識點:對(調查方式,概率,可能事件,必然事件)理解.解題關鍵:理解相關概念,合理運用舉反例法.2、B【解析】先求的絕對值,再求其相反數:根據數軸上某個數與原點的距離叫做這個數的絕對值的定義,在數軸上,點到原點的距離是,所以的絕對值是;相反數的定義是:如果兩個數只有符號不同,我們稱其中一個數為另一個數的相反數,特別地,1的相反數還是1.因此的相反數是.故選B.3、A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,則cosB==,故選A4、B【解析】試題解析:A.是軸對稱圖形但不是中心對稱圖形B.既是軸對稱圖形又是中心對稱圖形;C.是中心對稱圖形,但不是軸對稱圖形;D.是軸對稱圖形不是中心對稱圖形;故選B.5、B【解析】

設大馬有匹,小馬有匹,根據題意可得等量關系:大馬數+小馬數=100,大馬拉瓦數+小馬拉瓦數=100,根據等量關系列出方程即可.【詳解】解:設大馬有匹,小馬有匹,由題意得:,故選:B.本題主要考查的是由實際問題抽象出二元一次方程組,關鍵是正確理解題意,找出題目中的等量關系,列出方程組.6、B【解析】分析:主視圖是從物體的正面看得到的圖形,分別寫出每個選項中的主視圖,即可得到答案.詳解:A、主視圖是等腰梯形,故此選項錯誤;B、主視圖是長方形,故此選項正確;C、主視圖是等腰梯形,故此選項錯誤;D、主視圖是三角形,故此選項錯誤;故選B.點睛:此題主要考查了簡單幾何體的主視圖,關鍵是掌握主視圖所看的位置.7、B【解析】

根據一次函數的性質,根據不等式組即可解決問題;【詳解】∵一次函數y=(2m-3)x-1+m的圖象不經過第三象限,∴,解得1≤m<.故選:B.本題考查一次函數的圖象與系數的關系等知識,解題的關鍵是學會用轉化的思想思考問題,屬于中考常考題型.8、A【解析】

∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故選A.9、D【解析】

根據有理數的乘法法則進行計算即可.【詳解】故選:D.考查有理數的乘法法則:兩數相乘,同號得正,異號得負,并把絕對值相乘.10、D【解析】如圖,因為,∠1=30°,∠1+∠3=60°,所以∠3=30°,因為AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

認真審題,根據垂線段最短得出PM⊥AB時線段PM最短,分別求出PB、OB、OA、AB的長度,利用△PBM∽△ABO,即可求出本題的答案【詳解】解:如圖,過點P作PM⊥AB,則:∠PMB=90°,當PM⊥AB時,PM最短,因為直線y=x﹣3與x軸、y軸分別交于點A,B,可得點A的坐標為(4,0),點B的坐標為(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴,即:,所以可得:PM=.12、或5或1.【解析】

根據以點A,D,E為頂點的三角形是等腰三角形分類討論即可.【詳解】解:如圖(1)當在△ADE中,DE=5,當AD=DE=5時為等腰三角形,此時m=5.(2)又AC=5,當平移m個單位使得E、C點重合,此時AE=ED=5,平移的長度m=BC=1,(3)可以AE、AD為腰使ADE為等腰三角形,設平移了m個單位:則AN=3,AC=,AD=m,得:,得m=,綜上所述:m為或5或1,所以答案:或5或1.本題主要考查等腰三角形的性質,注意分類討論的完整性.13、110°.【解析】

解:∵∠1+∠2=180°,∴a∥b,∴∠3=∠4,又∵∠3=110°,∴∠4=110°.故答案為110°.14、113°或92°【解析】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°.∵△ACD是等腰三角形,∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD.①當AC=AD時,∠ACD=∠ADC=(180°﹣46°)÷2=67°,∴∠ACB=67°+46°=113°;②當DA=DC時,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°.故答案為113°或92°.15、直角三角形.【解析】

根據題意,畫出圖形,用垂直平分線的性質解答.【詳解】點O落在AB邊上,連接CO,∵OD是AC的垂直平分線,∴OC=OA,同理OC=OB,∴OA=OB=OC,∴A、B、C都落在以O為圓心,以AB為直徑的圓周上,∴∠C是直角.∴這個三角形是直角三角形.本題考查線段垂直平分線的性質,解題關鍵是準確畫出圖形,進行推理證明.16、2【解析】

過P作關于AC和AD的對稱點,連接和,過P作,和,M,N共線時最短,根據對稱性得知△PMN的周長的最小值為.因為四邊形ABCD是菱形,AD是對角線,可以求得,根據特殊三角形函數值求得,,再根據線段相加勾股定理即可求解.【詳解】過P作關于AC和AD的對稱點,連接和,過P作,四邊形ABCD是菱形,AD是對角線,,,,,又由題意得本題主要考查對稱性質,菱形性質,內角和定理和勾股定理,熟悉掌握定理是關鍵.三、解答題(共8題,共72分)17、(1)a+bab【解析】

(1)先通分,再進行同分母的減法運算,然后約分得到原式=a+b(2)利用根與系數的關系得到a+b=【詳解】解:(1)A==(a+b)(a-b)(2)∵a、b是方程x2∴a+b=4,ab=-1∴A=本題考查了根與系數的關系:若x1,x2是一元二次方程ax2+bx+c=018、(1)總調查人數是100人;(2)在扇形統(tǒng)計圖中“其它”類的圓心角是36°;(3)補全頻數分布直方圖見解析;(4)估計一下全校課余愛好是閱讀的學生約為960人.【解析】

(1)利用參加運動的人數除以其所占的比例即可求得這次調查的總人數;(2)用360°乘以“其它”類的人數所占的百分比即可求解;(3)求得“其它”類的人數、“娛樂”類的人數,補全統(tǒng)計圖即可;(4)用總人數乘以課余愛好是閱讀的學生人數所占的百分比即可求解.【詳解】(1)從條形統(tǒng)計圖中得出參加運動的人數為20人,所占的比例為20%,∴總調查人數=20÷20%=100人;(2)參加娛樂的人數=100×40%=40人,從條形統(tǒng)計圖中得出參加閱讀的人數為30人,∴“其它”類的人數=100﹣40﹣30﹣20=10人,所占比例=10÷100=10%,在扇形統(tǒng)計圖中“其它”類的圓心角=360×10%=36°;(3)如圖(4)估計一下全校課余愛好是閱讀的學生約為3200×=960(人).本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖的應用,從條形統(tǒng)計圖、扇形統(tǒng)計圖中獲取必要的信息是解決問題的關鍵.19、(1)證明見解析;(2);【解析】

(1)根據正方形的性質得到∠GAD=∠EAB,證明△GAD≌△EAB,根據全等三角形的性質證明;(2)根據正方形的性質得到BD⊥AC,AC=BD=5,根據勾股定理計算即可.【詳解】(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,在△GAD和△EAB中,,∴△GAD≌△EAB,∴EB=GD;(2)∵四邊形ABCD是正方形,AB=5,∴BD⊥AC,AC=BD=5,∴∠DOG=90°,OA=OD=BD=,∵AG=2,∴OG=OA+AG=,由勾股定理得,GD==,∴EB=.本題考查的是正方形的性質、全等三角形的判定和性質,掌握正方形的對角線相等、垂直且互相平分是解題的關鍵.20、兩組對邊分別相等的四邊形是平行四邊形;平行四邊形的對角線互相平分;兩點確定一條直線.【解析】

根據對角線互相平分的四邊形是平行四邊形可判斷四邊形ABCP為平行四邊形,再根據平行四邊形的性質:對角線互相平分即可得到BD=CD,由此可得到小楠的作圖依據.【詳解】解:由作圖的步驟可知平行四邊形可判斷四邊形ABCP為平行四邊形,再根據平行四邊形的性質:對角線互相平分即可得到BD=CD,所以小楠的作圖依據是:兩組對邊分別相等的四邊形是平行四邊形;平行四邊形的對角線互相平分;兩點確定一條直線.故答案為:兩組對邊分別相等的四邊形是平行四邊形;平行四邊形的對角線互相平分;兩點確定一條直線.本題考查了作圖﹣復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.也考查了平行四邊形的判定和性質.21、(1)補圖見解析;(2)27°;(3)1800名【解析】

(1)根據A類的人數是10,所占的百分比是25%即可求得總人數,然后根據百分比的意義求得B類的人數;

(2)用360°乘以對應的比例即可求解;

(3)用總人數乘以對應的百分比即可求解.【詳解】(1)抽取的總人數是:10÷25%=40(人),在B類的人數是:40×30%=12(人).;(2)扇形統(tǒng)計圖扇形D的圓心角的度數是:360×=27°;(3)能在1.5小時內完成家庭作業(yè)的人數是:2000×(25%+30%+35%)=1800(人).考點:條形統(tǒng)計圖、扇形統(tǒng)計圖.22、(4)60;(4)作圖見試題解析;(4)4.【解析】試題分析:(4)利用科普類的人數以及所占百分比,即可求出被調查的學生人數;(4)利用(4)中所求得出喜歡藝體類的學生數進而畫出圖形即可;(4)首先求出樣本中喜愛文學類圖書所占百分比,進而估計全校最喜愛文學類圖書的學生數.試題解析:(4)被調查的學生人數為:44÷40%=60(人);(4)喜歡藝體類的學生數為:60-44-44-46=8(人),如圖所示:全校最喜愛文學類圖書的學生約有:4400×=4(人).考點:4.條形統(tǒng)計圖;4.用樣本估計總體;4.扇形統(tǒng)計圖.23、(1)x≥﹣1;(2)a是不等式的解.【解析】

(1)根據解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數化為1可得.

(2)根據不等式的解的定義求解可得【詳解】解:(1)去分母得:2﹣x≤3(2+x),去括號得:2﹣x≤6+3x,移項、合并同類項得:﹣4x≤4,系數化為1得:x≥﹣1.(2)∵a>2,不等式的解集為x≥﹣1,而2>﹣1,∴a是不等式的解.本題考查了解一元一次不等式,掌握解一元一次不等式的步驟是解題的關鍵24、解:(1)①DE∥AC.②.(1)仍然成立,證明見解析;(3)3或2.【解析】

(1)①由旋轉可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等邊三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②過D作DN⊥AC交AC于點N,過E作EM⊥AC交AC延長線于M,過C作

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論