版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東省青島市2024-2025學(xué)年高二下學(xué)期4月期中考試數(shù)學(xué)檢測試題一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.某質(zhì)點(diǎn)的位移y(單位:m)與時(shí)間t(單位:s)滿足函數(shù)關(guān)系式y(tǒng)=t2+2t,當(dāng)t=1時(shí),該質(zhì)點(diǎn)的瞬時(shí)速度為()A.4 B.3 C.2 D.12.在(x﹣2)5的展開式中,x2的系數(shù)為()A.﹣40 B.40 C.﹣80 D.803.根據(jù)分類變量x與y的成對樣本數(shù)據(jù),計(jì)算得到χ2=8.988.依據(jù)α=0.001的獨(dú)立性檢驗(yàn),正確的結(jié)論為()(附:x0.01=6.635,x0.005=7.879,x0.001=10.828)A.變量與不獨(dú)立B.變量與不獨(dú)立,這個(gè)結(jié)論犯錯誤的概率不超過0.001C.變量與獨(dú)立D.變量與獨(dú)立,這個(gè)結(jié)論犯錯誤的概率不超過0.0014.隨著我國鐵路的發(fā)展,列車的正點(diǎn)率有了顯著的提高.據(jù)統(tǒng)計(jì),途經(jīng)某車站的只有和諧號和復(fù)興號列車,且和諧號列車的列次為復(fù)興號列車的列次的3倍,和諧號列車的正點(diǎn)率為0.98,復(fù)興號列車的正點(diǎn)率為0.99,則一列車能正點(diǎn)到達(dá)該車站的概率為()A.0.9825 B.0.9833 C.0.9867 D.0.98755.相關(guān)變量x,y的散點(diǎn)圖如下.若剔除點(diǎn)A后,剩下數(shù)據(jù)得到的統(tǒng)計(jì)中,較剔除之前值變大的是()A.y的平均值 B.相關(guān)系數(shù) C.決定系數(shù)R2 D.殘差的平方和6.甲、乙、丙、丁、戊共5名同學(xué)參加100米比賽,決出第1名到第5名的名次.比賽結(jié)束后甲說:“我不是第1名”,乙說:“我不是第5名”.根據(jù)以上信息,這5人的名次排列情況種數(shù)為()A.72 B.78 C.96 D.1207.我們將服從二項(xiàng)分布的隨機(jī)變量稱為二項(xiàng)隨機(jī)變量,服從正態(tài)分布的隨機(jī)變量稱為正態(tài)隨機(jī)變量.概率論中有一個(gè)重要的結(jié)論是棣莫弗一拉普拉斯極限定理,它表明,若隨機(jī)變量Y~B(n,p),當(dāng)n充分大時(shí),二項(xiàng)隨機(jī)變量Y可以由正態(tài)隨機(jī)變量X來近似,且正態(tài)隨機(jī)變量X的期望和方差與二項(xiàng)隨機(jī)變量Y的期望和方差相同.棣莫弗在1733年證明了p=12的特殊情形,1812年,拉普拉斯對一般的p進(jìn)行了證明.現(xiàn)拋擲一枚質(zhì)地均勻的硬幣100次,則利用正態(tài)分布近似估算硬幣正面向上次數(shù)超過60次的概率為()(附:若X~N(μ,σ2),則P(μ-σ≤X≤μ+σ)≈0.6827,P(μ-2σ≤X≤μ+2σ)≈0.9545,P(μ-3σ≤X≤μ+3σA.0.1587 B.0.0228 C.0.0027 D.0.00148.已知定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對于任意的實(shí)數(shù)x都有,且x>0時(shí),f′(x)>f(x).若a=f(1)e,b=f(ln2)2,c=3f(ln1A.a>c>b B.a>b>c C.c>a>b D.c>b>a二、選擇題:本題共3小題,每小題6分,共18分.在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求.全部選對的得6分,部分選對的得部分分,有選錯的得0分.9.一批產(chǎn)品中有3個(gè)正品,2個(gè)次品.現(xiàn)從中任意取出2件產(chǎn)品,記事件A:“2個(gè)產(chǎn)品中至少有一個(gè)正品”,事件B:“2個(gè)產(chǎn)品中至少有一個(gè)次品”,事件C:“2個(gè)產(chǎn)品中有正品也有次品”,則下列結(jié)論正確的是()A.事件A與事件B為互斥事件 B.事件B與事件C是相互獨(dú)立事件C.P(AB)=P(C) D.P(C|A)=210.若隨機(jī)變量X~N(0,σ2),f(x)=P(X≤x),則()A.f(-x)=1-f(x) B.f(2x)=2f(x)C.P(|X|<x)=2f(x)-1(x>0) D.若f(1+x1?x)>f(2),則111.已知函數(shù)f(x)=13x3-A.單調(diào)減區(qū)間為(-2,1) B.在區(qū)間[-3,3]上的最小值為?C.圖象關(guān)于點(diǎn)(12,?112)中心對稱三、填空題:本題共3小題,每小題5分,共15分.12.已知隨機(jī)變量的方差D(X)=1,則隨機(jī)變量Y=3X+2的方差D(Y)=13.某工廠為研究某種產(chǎn)品的產(chǎn)量x(噸)與所需某種原材料的質(zhì)量y(噸)的相關(guān)性,在生產(chǎn)過程中收集4組對應(yīng)數(shù)據(jù)(x,y),如下表所示.(殘差=觀測值-預(yù)測值)x3456y2.534根據(jù)表中數(shù)據(jù),得出y關(guān)于x的經(jīng)驗(yàn)回歸方程為y=0.7x+a.據(jù)此計(jì)算出在樣本(4,3)處的殘差為,則表中m的值為______.14.如圖是一塊高爾頓板的示意圖.在一塊木板上釘著10排相互平行但錯開的小木釘,小木釘之間留有適當(dāng)?shù)目障蹲鳛橥ǖ?,前面擋有一塊玻璃.將小球從頂端放入,小球下落過程中,假定其每次碰到小木釘后,向左下落的概率為14,向右下落的概率為3四、解答題:本題共5小題,共77分.解答應(yīng)寫出文字說明、證明過程或演算步驟.15.(13分)已知二項(xiàng)式(2x-1)n展開式中,前二項(xiàng)的二項(xiàng)式系數(shù)和是11.(1)求n的值;(2)求其二項(xiàng)式系數(shù)之和與各項(xiàng)系數(shù)之和的差;(3)求上述展開式中所有偶數(shù)項(xiàng)的系數(shù)和.16.(15分)已知函數(shù)f(x)=-4alnx+x2-1(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1)處的切線的方程;(2)探究f(x)的最小值;(3)當(dāng)a>0時(shí),求f(x)的最小值的極值.17.(15分)某車企為考察選購新能源汽車的款式與性別的關(guān)聯(lián)性,調(diào)查100人購買情況,得到如下列聯(lián)表:新能源汽車A款新能源汽車B款總計(jì)男性5010x女性251540總計(jì)y25100(1)求x,y;(2)根據(jù)小概率值α=0.05的獨(dú)立性檢驗(yàn),能否認(rèn)為選購該新能源汽車的款式與性別有關(guān)聯(lián)?(3)假設(shè)用樣本估計(jì)總體,用頻率估計(jì)概率,所有人選購汽車的款式情況相互獨(dú)立.若從購買者中隨機(jī)抽取3人,設(shè)被抽取的3人中購買了B款車的人數(shù)為X,求X的數(shù)學(xué)期望.附:,.α0.100.050.0100.005xα2.7063.8416.6357.87918.(17分)某鄉(xiāng)村企業(yè)希望通過技術(shù)革新增加產(chǎn)品收益,根據(jù)市場調(diào)研,技術(shù)革新投入經(jīng)費(fèi)x(單位:萬元)和增加收益y(單位:萬元)的數(shù)據(jù)如下表:x4681012y2742555660為了進(jìn)一步了解技術(shù)革新投入經(jīng)費(fèi)x對增加收益y的影響,通過對表中數(shù)據(jù)進(jìn)行分析,分別提出了兩個(gè)回歸模型:①,②.(1)根據(jù)以上數(shù)據(jù),計(jì)算模型①中y與x的相關(guān)系數(shù)r(結(jié)果精確到0.01);(2)若0.95≤|r|≤1,則選擇模型①;否則選擇模型②.根據(jù)(1)的結(jié)果,試建立增加收益y關(guān)于技術(shù)革新投入經(jīng)費(fèi)x的回歸模型,并預(yù)測x=16時(shí)y的值(結(jié)果精確到0.01).附:i)回歸直線的斜率、截距的最小二乘估計(jì)以及相關(guān)系數(shù)分別為:,,ii)參考數(shù)據(jù):設(shè),,,,,.19.(17分)定義在區(qū)間D上的函數(shù)f(x)滿足:若對任意x1,x2∈D,且x1>x2,都有,則稱f(x)是D上的“好函數(shù)”.(1)若f(x)=ax2是[0,+∞)上的“好函數(shù)”,求a的取值范圍.(2)(ⅰ)證明:g(x)=lnx是(0,+∞)上的“好函數(shù)”.(ⅱ)設(shè)n∈N*,證明:ln(2n+1)>1+12+13+14數(shù)學(xué)試題答案一、選擇題1.選A.解析:因y=t2+2t,所以y′=2t+2,所以y′|t=1=2×2+2=6,所以當(dāng)t=1時(shí),該質(zhì)點(diǎn)的瞬時(shí)速度為4m/s.故選A.2.選C.解析:在(x﹣2)5的展開式中,含x2的項(xiàng)為,故x2的系數(shù)為﹣80.故選C.3.選C解析:因?yàn)?,所以依?jù)的獨(dú)立性檢驗(yàn),可以認(rèn)為變量與獨(dú)立.故選C.4.選A.解析:依題意,設(shè)到達(dá)該車站列車為和諧號列車的概率為,為復(fù)興號列車的概率為,則一列車能正點(diǎn)到達(dá)該車站的概率為.故選A.5.選C.解析:由散點(diǎn)圖可知,去掉點(diǎn)后,,的線性相關(guān)加強(qiáng),且是負(fù)相關(guān),故樣本的相關(guān)系數(shù)變小,決定系數(shù)變大,殘差平方和變小,樣本數(shù)據(jù)y的平均值也變小.故選C6.選B.解析:當(dāng)甲是第5名時(shí),共有種;當(dāng)甲不是第5名時(shí),共有種;綜上,共有78種.故選B.7.選B.解析:拋擲一枚質(zhì)地均勻的硬幣100次,設(shè)硬幣正面向上次數(shù)為,則,所以,,由題意,,且,,因?yàn)椋岳谜龖B(tài)分布近似估算硬幣正面向上次數(shù)超過60次的概率為,故選B.8.選C.解析:令,對于任意的實(shí)數(shù)都有,即為偶函數(shù);;當(dāng)時(shí),,當(dāng)時(shí),為增函數(shù);又,,即.故選C.二、選擇題9.選CD.解析:因?yàn)槭录c事件可以同時(shí)發(fā)生,故A錯誤;事件包含事件,所以事件與事件不是相互獨(dú)立事件,故B錯誤;因?yàn)?,所以,故C正確;,故D正確;故選CD10.選ACD.解析:對于A,隨機(jī)變量滿足正態(tài)分布,且,故,故A正確;對于B,當(dāng)x=0時(shí),此時(shí),故B錯誤;對于C,,故C正確;對于D,,故f(x)單調(diào)遞增,故,即,解得,故D正確.故選ACD11.選BCD.解析:對于A,,故,所以在和上,f'x>0,函數(shù)f(x)單調(diào)遞增;在(-1,2)上,f'x<0,函數(shù)f(x)單調(diào)遞減,故A錯誤;對于D,由A知,函數(shù)f(x)的極大值為,極小值,則,故D正確;對于B,,結(jié)合函數(shù)在[-3,3]的單調(diào)性可知,故B正確;對于C,,所以,故函數(shù)f(x)圖象關(guān)于點(diǎn)中心對稱,故C正確.故選BCD.三、填空題12.9解析:因?yàn)殡S機(jī)變量X的方差D(X)=1,隨機(jī)變量Y=3X+2.所以D(Y)=D(3X+2)=32D(X)=9.13.4.5解析:因?yàn)闃颖?4.3)處的殘差為-0.15,即,所以,所以回歸方程為:,因?yàn)?,,因?yàn)闃颖局行狞c(diǎn)在回歸直線上,所以,解得m=4.5.14.8解析:小球下落需要10次碰撞,每次向左落下的概率為14,向右下落的概率為34,小球掉入0號格子,需要向左10次,則概率為;小球掉入1號格子,需要向左9次,向右1次,則概率為;小球掉入2號格子,需要向左8次,向右2次,則概率為;小球掉入3號格子,需要向左7次,向右3次,則概率為;依此類推,小球掉入k(k=0,1,2,…,10)號格子,需要向10-k左次,向右k次,概率為,設(shè)小球掉入k號格子的概率最大,顯然,則,即,即,解得,又k為整數(shù),∴k=8,則小球落入8號格子的概率最大.四、解答題15.(13分)已知二項(xiàng)式(2x-1)n展開式中,前二項(xiàng)的二項(xiàng)式系數(shù)和是11.(1)求n的值;(2)求其二項(xiàng)式系數(shù)之和與各項(xiàng)系數(shù)之和的差;(3)求上述展開式中所有偶數(shù)項(xiàng)的系數(shù)和.解:(1)因?yàn)槎?xiàng)式展開式中,前二項(xiàng)的二項(xiàng)式系數(shù)和是11,所以,······································································································2分得到1+n=11,解得n=10.···························································································3分(2)由二項(xiàng)式性質(zhì)得二項(xiàng)式系數(shù)之和為210=1024,·······························································5分令,可得各項(xiàng)系數(shù)之和為,···································································7分所以二項(xiàng)式系數(shù)之和與各項(xiàng)系數(shù)之和的差為1024-1=1023.···············································8分(3)令f(x)=(2x-1)10,則,·············································10分,································12分所以.································································13分16.(15分)已知函數(shù)f(x)=-4alnx+x2-1.(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1)處的切線的方程;(2)探究f(x)的最小值;(3)當(dāng)a>0時(shí),求f(x)的最小值的極值.解:(1)當(dāng)時(shí),,,·······································1分則f(1)=0,,·······································3分所以切線的方程為.·······································4分(2)定義域?yàn)椋?,······································?分當(dāng)時(shí),,則f(x)在上單調(diào)遞增,故f(x)沒有最小值;·····························7分當(dāng)時(shí),f(x)在單調(diào)遞減,在單調(diào)遞增,·······································8分所以.·······································9分綜上所述:當(dāng)時(shí),f(x)沒有最小值;當(dāng)時(shí),f(x)最小值為;··················10分(3)由(2)可得,設(shè),····································11分則,····································12分令,得,所以當(dāng)時(shí),,單調(diào)遞增,·································13分當(dāng)時(shí),,單調(diào)遞減,·······································14分所以的極大值為,無極小值.······································15分解:(1)函數(shù)f(x)=ax3+bx2-6x+9(a,b∈R),則,·················1分由題意得,解得,········································3分當(dāng)時(shí),,令,解得.············4分則當(dāng)單調(diào)遞增;單調(diào)遞減;,單調(diào)遞增,············································6分所以x=1是極小值點(diǎn),符合題意,故.······································7分(2)由(1)知,·······································8分則當(dāng)單調(diào)遞增;當(dāng),f(x)單調(diào)遞減;當(dāng)單調(diào)遞增,········10分當(dāng)時(shí),函數(shù)f(x)取得極小值f(1)=4,··································································12分當(dāng)時(shí),函數(shù)f(x)取得極大值,而f(-1)=8,f(2)=17,···························14分故f(x)在[-1,2]上值域?yàn)閇4,17].··········································15分17.(15分)某車企為考察選購新能源汽車的款式與性別的關(guān)聯(lián)性,調(diào)查100人購買情況,得到如下列聯(lián)表:新能源汽車A款新能源汽車B款總計(jì)男性5010x女性251540總計(jì)y25100(1)求x,y;(2)根據(jù)小概率值α=0.05的獨(dú)立性檢驗(yàn),能否認(rèn)為選購該新能源汽車的款式與性別有關(guān)聯(lián)?(3)假設(shè)用樣本估計(jì)總體,用頻率估計(jì)概率,所有人選購汽車的款式情況相互獨(dú)立.若從購買者中隨機(jī)抽取3人,設(shè)被抽取的3人中購買了B款車的人數(shù)為X,求X的數(shù)學(xué)期望.附:,.0.100.050.0100.0052.7063.8416.6357.879解:(1)由題意得,.·········································2分(2)零假設(shè)為H0:選購新能源汽車的款式與性別無關(guān)聯(lián).··························3分根據(jù)列聯(lián)表中的數(shù)據(jù),可得,··············6分根據(jù)小概率值α=0.05的獨(dú)立性檢驗(yàn),推斷H0不成立,·····························7分可以認(rèn)為選購車的款式與性別有關(guān),此推斷犯錯誤的概率不大于0.05;············8分(3)隨機(jī)抽取1人購買B款車的概率為,·····························································10分被抽取的3人中購買了B款車的人數(shù)X的可能取值為0,12,3,·············································11分由題意得,··································································································13分由二項(xiàng)分布的期望公式得.··································································15分18.(17分)某鄉(xiāng)村企業(yè)希望通過技術(shù)革新增加產(chǎn)品收益,根據(jù)市場調(diào)研,技術(shù)革新投入經(jīng)費(fèi)x(單位:萬元)和增加收益y(單位:萬元)的數(shù)據(jù)如下表:x4681012y2742555660為了進(jìn)一步了解技術(shù)革新投入經(jīng)費(fèi)x對增加收益y的影響,通過對表中數(shù)據(jù)進(jìn)行分析,分別提出了兩個(gè)回歸模型:①,②.(1)根據(jù)以上數(shù)據(jù),計(jì)算模型①中y與x的相關(guān)系數(shù)r(結(jié)果精確到0.01);(2)若0.95≤|r|≤1,則選擇模型①;否則選擇模型②.根據(jù)(1)的結(jié)果,試建立增加收益y關(guān)于技術(shù)革新投入經(jīng)費(fèi)x的回歸模型,并預(yù)測x=16時(shí)y的值(結(jié)果精確到0.01).附:i)回歸直線的斜率、截距的最小二乘估計(jì)以及相關(guān)系數(shù)分別為:,,ii)參考數(shù)據(jù):設(shè),,,,,.解:(1)因?yàn)?,························?分,····························2分所以,······················3分,······················4分,······················6分模型①中,相關(guān)系數(shù),······················8分(2)因?yàn)?,所以選擇模型②,························10分令,先建立關(guān)于的線性回歸方程,······················11分由于,······················13分,······················14分所以關(guān)于的線性回歸方程為,即,······················15分當(dāng)x=16時(shí),(萬元),··············
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)丁砜裝置操作工安全操作評優(yōu)考核試卷含答案
- 白酒貯酒工崗前安全生產(chǎn)知識考核試卷含答案
- 搪瓷制品制造工崗前個(gè)人防護(hù)考核試卷含答案
- 中學(xué)生生病請假條 模板
- 外公去世請假條模板
- 2025年衛(wèi)浴柜類項(xiàng)目合作計(jì)劃書
- 2025年鋼結(jié)構(gòu)用H型鋼項(xiàng)目發(fā)展計(jì)劃
- 班主任培訓(xùn)課件教學(xué)
- 玻璃產(chǎn)業(yè)介紹
- 2026年酒款識別掃描儀項(xiàng)目項(xiàng)目建議書
- 2026年重慶市江津區(qū)社區(qū)專職人員招聘(642人)考試參考題庫及答案解析
- 2026年1月福建廈門市集美區(qū)后溪鎮(zhèn)衛(wèi)生院補(bǔ)充編外人員招聘16人筆試模擬試題及答案解析
- 2026年長治職業(yè)技術(shù)學(xué)院單招職業(yè)技能考試題庫附答案解析
- 新華資產(chǎn)招聘筆試題庫2026
- 2026年丹東市人力資源和社會保障局公開選聘法律顧問備考題庫及完整答案詳解一套
- 2026年干部綜合能力高頻知識點(diǎn)測試題附解析
- GB/T 46544-2025航空航天用螺栓連接橫向振動防松試驗(yàn)方法
- 炎德·英才大聯(lián)考長沙市一中2026屆高三月考(五)歷史試卷(含答案詳解)
- 零售行業(yè)采購經(jīng)理商品采購與庫存管理績效考核表
- 2025年語文合格考試題庫及答案
評論
0/150
提交評論