下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
【教學目標】1.理解并記憶對數(shù)函數(shù)的定義,會畫對數(shù)函數(shù)的圖像.2.理解并掌握對數(shù)函數(shù)的性質(zhì).3.熟練應(yīng)用對數(shù)函數(shù)的圖象和性質(zhì),解決一些綜合問題.【教法指導】本節(jié)重點是掌握對數(shù)函數(shù)的圖象和性質(zhì);難點是對數(shù)函數(shù)的圖象和性質(zhì)及應(yīng)用。本節(jié)知識的主要學習方法是:動手與觀察,思考與交流,歸納與總結(jié)。加強新舊知識之間的聯(lián)系,培養(yǎng)自己分析問題、解決問題的能力,從而獲得學習數(shù)學的方法?!窘虒W過程】☆情境引入☆1、(自學、思考)教材P81引例利用計算器填寫下表:碳14的含量P0.50.30.10.010.001生物死亡年數(shù)t觀察上表,“對每一個碳14的含量P的取值,通過對應(yīng)關(guān)系,生物死亡年數(shù)t都有唯一的值與之對應(yīng),從而t是P的函數(shù)”.☆探索新知☆1、探索對數(shù)函數(shù)的定義及其相關(guān)概念.〖探究活動〗(1)什么對數(shù)函數(shù)?對數(shù)函數(shù)對底數(shù)的限制是什么?2、探索對數(shù)函數(shù)的性質(zhì).(3)畫出對數(shù)函數(shù)的圖像。(4)根據(jù)圖像觀察對數(shù)函數(shù)的定義域、值域、特殊點、單調(diào)性、最大(?。┲?、奇偶性是什么?【教師釋疑】(一)對數(shù)函數(shù)的概念 1.定義:函數(shù),且叫做對數(shù)函數(shù)其中是自變量,函數(shù)的定義域是(0,+∞).對數(shù)函數(shù)對底數(shù)的限制:,且.(二)對數(shù)函數(shù)的圖象和性質(zhì)eq\o\ac(○,1)在同一坐標系中畫出下列對數(shù)函數(shù)的圖象;(可用描點法,也可借助科學計算器或計算機)【思考與交流】函數(shù),是對數(shù)函數(shù)嗎?〖探究活動〗底數(shù)是如何影響函數(shù)的?〖教師釋疑〗讓學生畫出不同底數(shù)的對數(shù)函數(shù),發(fā)現(xiàn)規(guī)律.教師對學生回答加以點評.總結(jié):(1)當a>0時,對數(shù)函數(shù)是增函數(shù);(2)當a<0時,對數(shù)函數(shù)是減函數(shù)?!畹湫屠}☆題型一:求函數(shù)的定義域例一:求下列函數(shù)的定義域函數(shù)的定義域是()ABCD【答案】D【解析】由題可知,,解得.(變式訓練)函數(shù)y=eq\f(3,log2(2+x))的定義域是()A.R B.(-2,+∞)C.(-∞,-2) D.(-2,-1)∪(-1,+∞)【答案】D【解析】由題可知,要使函數(shù)有意義,x的取值需滿足eq\b\lc\{(\a\vs4\al\co1(2+x>0,,log2(2+x)≠0,))解得x>-2,且x≠-1.故選D.題型二:根據(jù)對數(shù)函數(shù)的性質(zhì)解決實際問題例二:根據(jù)函數(shù)f(x)=log2x的圖像和性質(zhì)解決以下問題.(1)若f(a)>f(2),求a的取值范圍.(2)y=log2(2x-1)在x∈上的最值.題型三:根據(jù)對數(shù)函數(shù)的性質(zhì)比較大小例三:(1)比較log2eq\f(4,5)與log2eq\f(3,4)的大??;(2)若log2(2-x)>0,求x的取值范圍.∴2-x>1,即x<1.∴x的取值范圍為(-∞,1).☆巧思解題☆設(shè)a=lge,b=(lge)2,c=lgeq\r(e),則().A.a(chǎn)>b>c B.a(chǎn)>c>bC.c>a>b D.c>b>a【答案】B【解析】由題可知,因為e<eq\r(10),所以a=lge<lgeq\r(10)=eq\f(1,2),所以(lge)2<lge.即c=lgeq\r(e)=eq\f(1,2)lge>(lge)2,所以b<c<a.☆課堂提高☆1.函數(shù)y=log2x(1≤x≤8)的值域是()A.RB.D.2.已知函數(shù)f(x)=loga(1+x)+loga(3-x)(a>0,且a≠1).(1)求函數(shù)f(x)的定義域;(2)若函數(shù)f(x)的最小值為-2,求實數(shù)a的值.【答案】(1)(-1,3);(2)a=eq\f(1,2);【解析】由題可知,(1)由題意得eq\b\lc\{\rc\(\a\vs4\al\co1(1+x>0,3-x>0)),解得-1<x<3,∴函數(shù)f(x)的定義域為(-1,3).(2)∵f(x)=loga=loga(-x2+2x+3)=loga,若0<a<1,則當x=1時,f(x)有最小值loga4,∴l(xiāng)oga
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 衛(wèi)星結(jié)構(gòu)全面解析
- 2025年企業(yè)消防安全事故案例匯編
- 供應(yīng)商管理制度
- 公共交通車輛清潔消毒制度
- 超市員工培訓及心理輔導制度
- Unit 2 Stay Healthy Section A 知識清單 2025-2026學年人教版八年級英語下冊
- 中國熱帶農(nóng)業(yè)科學院香料飲料研究所2026年第一批公開招聘工作人員備考題庫完整答案詳解
- 2026年蘇州市醫(yī)療保險研究會人員招聘備考題庫及一套完整答案詳解
- 養(yǎng)老院收費標準及退費制度
- 2026年數(shù)智備考題庫設(shè)計師、系統(tǒng)運維工程師招聘備考題庫附答案詳解
- 2026年中國熱帶農(nóng)業(yè)科學院橡膠研究所高層次人才引進備考題庫含答案詳解
- 2025-2026學年四年級英語上冊期末試題卷(含聽力音頻)
- 2026屆川慶鉆探工程限公司高校畢業(yè)生春季招聘10人易考易錯模擬試題(共500題)試卷后附參考答案
- 2026年廣西出版?zhèn)髅郊瘓F有限公司招聘(98人)考試參考題庫及答案解析
- 醫(yī)源性早發(fā)性卵巢功能不全臨床治療與管理指南(2025版)
- 甘肅省平?jīng)鍪?2025年)輔警協(xié)警筆試筆試真題(附答案)
- 中國雙相障礙防治指南(2025版)
- 醫(yī)療衛(wèi)生政策與規(guī)劃制定
- 中國中央企業(yè)高層管理者面試問題
- 港口安全生產(chǎn)管理課件
- 2025年色母料項目發(fā)展計劃
評論
0/150
提交評論