版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河北省石家莊四十二中學(xué)2025年數(shù)學(xué)八下期末綜合測試模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.如圖,在△ABC中,BF平分∠ABC,過A點作AF⊥BF,垂足為F并延長交BC于點G,D為AB中點,連接DF延長交AC于點E。若AB=12,BC=20,則線段EF的長為()A.2 B.3 C.4 D.52.為籌備班級聯(lián)歡會,班干部對全班同學(xué)最愛吃的水果進行了統(tǒng)計,最終決定買哪種水果時,班干部最關(guān)心的統(tǒng)計量是()A.平均數(shù) B.中位數(shù)C.眾數(shù) D.方差3.下列方程中是一元二次方程的是()A.x2﹣1=0 B.y=2x2+1 C.x+=0 D.x2+y2=14.一個六邊形ABCDEF紙片上剪去一個角∠BGD后,得到∠1+∠2+∠3+∠4+∠5=430°,則∠BGD=()A.60° B.70° C.80° D.90°5.如圖,、分別是平行四邊形的邊、上的點,且,分別交、于點、.下列結(jié)論:①四邊形是平行四邊形;②;③;④,其中正確的個數(shù)是()A.1個 B.2個C.3個 D.4個6.如圖,已知二次函數(shù),它與軸交于、,且、位于原點兩側(cè),與的正半軸交于,頂點在軸右側(cè)的直線:上,則下列說法:①②③④其中正確的結(jié)論有()A.①② B.②③ C.①②③ D.①②③④7.如圖,在直角坐標系中,正方形OABC的頂點O與原點重合,頂點A、C分別在x軸、y軸上,反比例函數(shù)y=(k≠0,x>0)的圖象與正方形的兩邊AB、BC分別交于點E、F,F(xiàn)D⊥x軸,垂足為D,連接OE、OF、EF,F(xiàn)D與OE相交于點G.下列結(jié)論:①OF=OE;②∠EOF=60°;③四邊形AEGD與△FOG面積相等;④EF=CF+AE;⑤若∠EOF=45°,EF=4,則直線FE的函數(shù)解析式為.其中正確結(jié)論的個數(shù)是()A.2 B.3 C.4 D.58.一次函數(shù)的圖象與軸、軸分別交于點,,點,分別是,的中點,是上一動點.則周長的最小值為()A.4 B. C. D.9.如圖,在△ABC中,D、E分別為AC、BC的中點,AF平分∠CAB,交DE于點F,若DF=3,則AC的長為()A. B. C. D.10.下列各圖象中,不是y關(guān)于x的函數(shù)圖象的是()A. B. C. D.11.下列說法不一定成立的是()A.若,則B.若,則C.若,則D.若,則12.如圖,在中,點分別在邊,,上,且,.下列四個判斷中,不正確的是()A.四邊形是平行四邊形B.如果,那么四邊形是矩形C.如果平分平分∠BAC,那么四邊形AEDF是菱形D.如果AD⊥BC且AB=AC,那么四邊形AEDF是正方形二、填空題(每題4分,共24分)13.如圖,在中,對角線,相交于點,添加一個條件判定是菱形,所添條件為__________(寫出一個即可).14.把直線沿軸向上平移5個單位,則得到的直線的表達式為_________.15.在□ABCD中,O是對角線的交點,那么____.16.如圖是某地區(qū)出租車單程收費y(元)與行駛路程x(km)之間的函數(shù)關(guān)系圖象,根據(jù)圖象回答下列問題:(Ⅰ)該地區(qū)出租車的起步價是_____元;(Ⅱ)求超出3千米,收費y(元)與行駛路程x(km)(x>3)之間的函數(shù)關(guān)系式_____.17.已知一個凸多邊形的內(nèi)角和是它的外角和的3倍,那么這個凸多邊形的邊數(shù)等于_________.18.已知直線(n為正整數(shù))與坐標軸圍成的三角形的面積為Sn,則S1+S2+S3+…+S2012=.三、解答題(共78分)19.(8分)何老師安排喜歡探究問題的小明解決某個問題前,先讓小明看了一個有解答過程的例題.例:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3為什么要對2n2進行了拆項呢?聰明的小明理解了例題解決問題的方法,很快解決了下面兩個問題.相信你也能很好的解決下面的這兩個問題,請寫出你的解題過程..解決問題:(1)若x2﹣4xy+5y2+2y+1=0,求xy的值;(2)已知a、b、c是△ABC的三邊長,滿足a2+b2=10a+12b﹣61,c是△ABC中最短邊的邊長,且c為整數(shù),那么c可能是哪幾個數(shù)?20.(8分)在正方形網(wǎng)格中,點A、B、C都是格點,僅用無刻度的直尺按下列要求作圖.(1)在圖1中,作線段的垂直平分線;(2)在圖2中,作的角平分線.21.(8分)如圖,在四邊形中,,,,,、分別在、上,且,與相交于點,與相交于點.(1)求證:四邊形為矩形;(2)判斷四邊形是什么特殊四邊形?并說明理由;(3)求四邊形的面積.22.(10分)某中學(xué)舉辦“校園好聲音”朗誦大賽,根據(jù)初賽成績,七年級和八年級各選出5名選手組成七年級代表隊和八年級代表隊參加學(xué)校決賽兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示:(1)根據(jù)所給信息填寫表格;平均數(shù)(分)中位數(shù)(分)眾數(shù)(分)七年級
85
八年級85
100(2)結(jié)合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;(3)若七年級代表隊決賽成績的方差為70,計算八年級代表隊決賽成績的方差,并判斷哪個代表隊的選手成績較為穩(wěn)定.23.(10分)一次期中考試中,甲、乙、丙、丁、戍五位同學(xué)的數(shù)學(xué)、英語成績等有關(guān)信息如下表所示:(單位:分)甲乙丙丁戍平均分標準差數(shù)學(xué)7172696870英語888294857685(1)求這五位同學(xué)在本次考試中數(shù)學(xué)成績的平均分和英語成績的標準差;(2)為了比較不同學(xué)科考試成績的好與差,采用標準分是一個合理的選擇.標準分的計算公式是:標準分=(個人成績-平均成績)÷成績標準差.從標準分看,標準分大的考試成績更好.請問甲同學(xué)在本次考試中,數(shù)學(xué)與英語哪個學(xué)科考得更好?24.(10分)下面是小明設(shè)計的“作矩形ABCD”的尺規(guī)作圖過程:已知:在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.作法:如圖①以點B為圓心,AC長為半徑作弧;②以點C為圓心,AB長為半徑作?。虎蹆苫〗挥邳cD,A,D在BC同側(cè);④連接AD,CD.所以四邊形ABCD是矩形,根據(jù)小明設(shè)計的尺規(guī)作圖過程,(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)(2)完成下面的證明.證明:鏈接BD.∵AB=________,AC=__________,BC=BC∴ΔABC≌ΔDCB∴∠ABC=∠DCB=90°∴AB∥CD.∴四邊形ABCD是平行四邊形∵∠ABC=90°∴四邊形ABCD是矩形.(_______________)(填推理的依據(jù))25.(12分)知識再現(xiàn):如果,,則線段的中點坐標為;對于兩個一次函數(shù)和,若兩個一次函數(shù)圖象平行,則且;若兩個一次函數(shù)圖象垂直,則.提醒:在下面這個相關(guān)問題中如果需要,你可以直接利用以上知識.在平面直角坐標系中,已知點,.(1)如圖1,把直線向右平移使它經(jīng)過點,如果平移后的直線交軸于點,交x軸于點,請確定直線的解析式.(2)如圖2,連接,求的長.(3)已知點是直線上一個動點,以為對角線的四邊形是平行四邊形,當取最小值時,請在圖3中畫出滿足條件的,并直接寫出此時點坐標.26.在平面直角坐標系xOy中,點P到封閉圖形F的“極差距離”D(P,W)定義如下:任取圖形W上一點Q,記PQ長度的最大值為M,最小值為m(若P與Q重合,則PQ=0),則“極差距離”D(P,W)=M﹣m.如圖,正方形ABCD的對角線交點恰與原點O重合,點A的坐標為(2,2)(1)點O到線段AB的“極差距離”D(O,AB)=______.點K(5,2)到線段AB的“極差距離”D(K,AB)=______.(2)記正方形ABCD為圖形W,點P在x軸上,且“極差距離”D(P,W)=2,求直線AP的解析式.
參考答案一、選擇題(每題4分,共48分)1、C【解析】
由直角三角形的性質(zhì)可求得DF=BD=AB,由角平分線的定義可證得DE∥BC,利用三角形中位線定理可求得DE的長,則可求得EF的長.【詳解】解:∵AF⊥BF,D為AB的中點,∴DF=DB=AB=6,∴∠DBF=∠DFB,∵BF平分∠ABC,∴∠DBF=∠CBF,∴∠DFB=∠CBF,∴DE∥BC,∴DE為△ABC的中位線,∴DE=BC=10,∴EF=DE?DF=10?6=4,故選:C.【點睛】本題考查直角三角形斜邊上的中線的性質(zhì),角平分線的性質(zhì),等腰三角形的判定與性質(zhì),三角形中位線定理.根據(jù)直角三角形斜邊上的中線是斜邊是斜邊的一半可得△DBF為等腰三角形,通過角平分線的性質(zhì)和等角對等邊可得DF//BC,即DE為△ABC的中位線,從而計算出DE,繼而求出EF.2、C【解析】分析:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的一個數(shù)是這組數(shù)據(jù)的眾數(shù),班長最關(guān)心吃哪種水果的人最多,即這組數(shù)據(jù)的眾數(shù).詳解:吃哪種水果的人最多,就決定最終買哪種水果,而一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的一個數(shù)是這組數(shù)據(jù)的眾數(shù).故選C.點睛:此題主要考查統(tǒng)計的有關(guān)知識,主要是眾數(shù)的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.3、A【解析】解:A.x2﹣1=0是一元二次方程,故A正確;B.y=2x2+1是二次函數(shù),故B錯誤;C.x+=0是分式方程,故C錯誤;D.x2+y2=1中含有兩個未知數(shù),故D錯誤.故選A.4、B【解析】
∵六邊形ABCDEF的內(nèi)角和為:180°×(6-2)=720°,且∠1+∠2+∠3+∠4+∠5=430°,∴∠GBC+∠C+∠CDG=720°-430°=290°,∴∠G=360°-(∠GBC+∠C+∠CDG)=70°,故選B.5、D【解析】
根據(jù)平行四邊形的性質(zhì)即可判斷.【詳解】∵四邊形ABCD為平行四邊形,∴AD∥BC,又,∴四邊形是平行四邊形①正確;∴AE=CF,∠EAG=∠FCH,又∠AGE=∠BGC=∠CHF,∴,②正確;∴EG=FH,故BE-EG=DF-FH,故,③正確;∵,∴,故④正確故選D.【點睛】此題主要考查平行四邊形的性質(zhì),解題的關(guān)鍵是熟知平行四邊形的性質(zhì)與全等三角形的判定與性質(zhì).6、D【解析】
由根與系數(shù)的關(guān)系,結(jié)合頂點位置和坐標軸位置,進行分析即可得到答案.【詳解】解:設(shè)函數(shù)圖像與x軸交點的橫坐標分別為x1,x2則根據(jù)根于系數(shù)的關(guān)系得到:x1+x2=b,x1x2=c∵A,B兩點位于y軸兩側(cè),且對稱軸在y軸的右側(cè),則b>0函數(shù)圖像交y軸于C點,則c<0,∴bc<0,即①正確;又∵頂點坐標為(),即()∴=4,即又∵=,即∴AB=4即③正確;又∵A,B兩點位于y軸兩側(cè),且對稱軸在y軸的右側(cè)∴<2,即b<4∴0<b<4,故②正確;∵頂點的縱坐標為4,∴△ABD的高為4∴△ABD的面積=,故④正確;所以答案為D.【點睛】本題考查了二次函數(shù)與一元二次方程的聯(lián)系,熟練掌握二次函數(shù)和一元二次方程的性質(zhì)是解答本題的關(guān)鍵.7、B【解析】
①通過證明全等判斷,②④只能確定為等腰三角形,不能確定為等邊三角形,據(jù)此判斷正誤,③通過判斷,⑤作于點M通過直角三角形求出E、F坐標從而求得直線解析式.【詳解】∵點E、F都在反比例函數(shù)的圖像上,∴,即,∵四邊形是正方形,∴,∴∴,∴,①正確;∵∴,∵k的值不能確定,∴的值不能確定,②錯誤;∴只能確定為等腰三角形,不能確定為等邊三角形,∴,,∴,,④錯誤;∵,∴,∴,③正確;作于點M,如圖∵,為等腰直角三角形,,設(shè),則,在中,,即,解得,∴,在正方形中,,∴,即為等腰直角三角形,∴,設(shè)正方形的邊長為,則,在中,,即,解得∴,∴∴設(shè)直線的解析式為,過點則有解得故直線的解析式為;⑤正確;故正確序號為①③⑤,選.【點睛】本題考查了反比例函數(shù)與正方形的綜合運用,解題的關(guān)鍵在于利用函數(shù)與正方形的相關(guān)知識逐一判斷正誤.8、D【解析】
作C點關(guān)于y軸的對稱點,連接,與y軸的交點即為所求點P,用勾股定理可求得長度,可得PC+PD的最小值為,再根據(jù)CD=2,可得PC+PD+CD=【詳解】解:如圖,作C點關(guān)于y軸的對稱點,連接交y軸與點P,此時PC+PD的值最小且∵,分別是,的中點,,∴C(1,0),D(1,2)在Rt△中,由勾股定理可得又∵D(1,2)∴CD=2∴此時周長為PC+PD+CD=故選D【點睛】本題考查最短路徑問題,把圖形作出來是解題關(guān)鍵,再結(jié)合勾股定理解題.9、C【解析】
首先根據(jù)條件D、E分別是AC、BC的中點可得DE∥AB,再求出∠2=∠3,根據(jù)角平分線的定義推知∠1=∠3,則∠1=∠2,所以由等角對等邊可得到DA=DF=AC.【詳解】如圖,∵D、E分別為AC、BC的中點,∴DE∥AB,∴∠2=∠3,又∵AF平分∠CAB,∴∠1=∠3,∴∠1=∠2,∴AD=DF=3,∴AC=2AD=1.故選C.【點睛】本題考查了三角形中位線定理,等腰三角形的判定與性質(zhì).三角形中位線的定理是:三角形的中位線平行于第三邊且等于第三邊的一半.10、B【解析】
根據(jù)函數(shù)的定義可知,滿足對于x的每一個取值,y都有唯一確定的值與之對應(yīng)關(guān)系,據(jù)此即可確定函數(shù)的個數(shù).【詳解】解:由函數(shù)的定義可知,每一個給定的x,都有唯一確定的y值與其對應(yīng)的才是函數(shù),故選項A、C、D中的函數(shù)圖象都是y關(guān)于x的函數(shù),B中的不是,故選:B.【點睛】主要考查了函數(shù)的定義.函數(shù)的定義:在一個變化過程中,有兩個變量x,y,對于x的每一個取值,y都有唯一確定的值與之對應(yīng),則y是x的函數(shù),x叫自變量.11、C【解析】
A.在不等式的兩邊同時加上c,不等式仍成立,即,故本選項錯誤;B.在不等式的兩邊同時減去c,不等式仍成立,即,故本選項錯誤;C.當c=0時,若,則不等式不成立,故本選項正確;D.在不等式的兩邊同時除以不為0的,該不等式仍成立,即,故本選項錯誤.故選C.12、D【解析】
由DE∥CA,DF∥BA,根據(jù)兩組對邊分別平行的四邊形是平行四邊形可得四邊形AEDF是平行四邊形;又有∠BAC=90°,根據(jù)有一角是直角的平行四邊形是矩形,可得四邊形AEDF是矩形故A.
B正確;如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,∴∠FAD=∠ADF,∴AF=FD,那么根據(jù)鄰邊相等的平行四邊形是菱形,可得四邊形AEDF是菱形故C正確;如果AD⊥BC且AB=AC,那么AD平分∠BAC,同上可得四邊形AEDF是菱形,故D錯誤.故選D二、填空題(每題4分,共24分)13、AD=AB【解析】
根據(jù)菱形的判定定理即可求解.【詳解】∵四邊形ABCD為平行四邊形,所以可以添加AD=AB,即可判定是菱形,故填:AD=AB.【點睛】此題主要考查菱形的判定,解題的關(guān)鍵是熟知菱形的判定定理.14、【解析】
根據(jù)上加下減,左加右減的法則可得出答案.【詳解】解:沿y軸向上平移5個單位得到直線:,即.故答案是:.【點睛】本題考查一次函數(shù)的圖象變換,注意上下移動改變的是y,左右移動改變的是x,規(guī)律是上加下減,左加右減.15、【解析】
由向量的平行四邊形法則及相等向量的概念可得答案.【詳解】解:因為:□ABCD,所以,,所以:.故答案為:.【點睛】本題考查向量的平行四邊形法則,掌握向量的平行四邊形法則是解題的關(guān)鍵.16、8y=1x+1.【解析】
(Ⅰ)利用折線圖即可得出該城市出租車3千米內(nèi)收費8元,(Ⅱ)利用待定系數(shù)法求出一次函數(shù)解析式即可.【詳解】(Ⅰ)該城市出租車3千米內(nèi)收費8元,即該地區(qū)出租車的起步價是8元;(Ⅱ)依題意設(shè)y與x的函數(shù)關(guān)系為y=kx+b,∵x=3時,y=8,x=8時,y=18;∴,解得;所以所求函數(shù)關(guān)系式為:y=1x+1(x>3).故答案為:8;y=1x+1.【點睛】此題主要考查了一次函數(shù)的應(yīng)用,根據(jù)待定系數(shù)法求出一次函數(shù)的解析式是解題關(guān)鍵.17、1【解析】
根據(jù)多邊形的內(nèi)角和定理,多邊形的內(nèi)角和等于(n-2)?110°,外角和等于360°,然后列方程求解即可.【詳解】解:設(shè)這個凸多邊形的邊數(shù)是n,根據(jù)題意得
(n-2)?110°=3×360°,
解得n=1.
故這個凸多邊形的邊數(shù)是1.
故答案為:1.【點睛】本題主要考查了多邊形的內(nèi)角和公式與外角和定理,根據(jù)題意列出方程是解題的關(guān)鍵.18、.【解析】令x=0,則;令y=0,則,解得.∴.∴.考點:探索規(guī)律題(圖形的變化類),一次函數(shù)圖象上點的坐標特征三、解答題(共78分)19、(1)1;(2)c為2,3,1.【解析】
(1)已知等式變形后,利用完全平方公式變形,利用非負數(shù)的性質(zhì)求出x與y的值,即可求出的值;(2)由a2+b2=10a+12b-61,得a,b的值.進一步根據(jù)三角形一邊邊長大于另兩邊之差,小于它們之和,則b-a<c<a+b,即可得到答案.【詳解】(1)∵x2﹣1xy+5y2+2y+1=0,∴x2﹣1xy+1y2+y2+2y+1=0,則(x﹣2y)2+(y+1)2=0,解得x=﹣2,y=﹣1,故;(2)∵a2+b2=10a+12b﹣61,∴(a﹣5)2+(b﹣6)2=0,∴a=5,b=6,∵1<c<11,且c為最短邊,c為整數(shù),∴c為2,3,1.【點睛】此題主要考查了完全平方公式的變形應(yīng)用,解題關(guān)鍵是如何對已知問題拆分變形,構(gòu)造完全平方公式,然后直接判斷求解即可.20、見解析.【解析】
(1)直接利用矩形的性質(zhì)得出AB的中點,再利用AB為底得出等腰三角形進而得出答案;(2)借助網(wǎng)格利用等腰三角形的性質(zhì)得出答案.【詳解】(1)如圖所示:直線CD即為所求;(2)如圖所示:射線BD即為所求.【點睛】此題主要考查了應(yīng)用設(shè)計與作圖,正確借助網(wǎng)格分析是解題關(guān)鍵.21、(1)見解析;(2)四邊形EFPH為矩形,理由見解析;(3)【解析】
(1)由平行線的性質(zhì)證出∠BCD=90°即可;(2)根據(jù)矩形性質(zhì)得出CD=2,根據(jù)勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根據(jù)勾股定理的逆定理求出∠BEC=90°,根據(jù)矩形的性質(zhì)和平行四邊形的判定,推出平行四邊形DEBP和AECP,推出EH//FP,EF//HP,推出平行四邊形EFPH,根據(jù)矩形的判定推出即可;(3)根據(jù)三角形的面積公式求出CF,求出EF,根據(jù)勾股定理求出PF,根據(jù)面積公式求出即可.【詳解】(1)證明:∵AB//CD,∴∠CBA+∠BCD=180°,∵∠CBA=∠ADC=90°,∴∠BCD=90°,∴四邊形ABCD是矩形;(2)解:四邊形EFPH為矩形;理由如下:∵四邊形ABCD是矩形,∴AD=BC=5,AB=CD=2,AD∥BC,由勾股定理得:CE=,同理BE=2,∴CE2+BE2=5+20=25,∵BC2=52=25,∴BE2+CE2=BC2,∴∠BEC=90°,∴△BEC是直角三角形.∵DE=BP,DE//BP,∴四邊形DEBP是平行四邊形,∴BE//DP,∵AD=BC,AD//BC,DE=BP,∴AE=CP,∴四邊形AECP是平行四邊形,∴AP//CE,∴四邊形EFPH是平行四邊形,∵∠BEC=90°,∴平行四邊形EFPH是矩形.(3)解:∵四邊形AECP是平行四邊形,∴PD=BE=2,在Rt△PCD中,F(xiàn)C⊥PD,PC=BC-BP=4,由三角形的面積公式得:PD?CF=PC?CD,∴CF=,∴EF=CE-CF=,∵PF=,∴S矩形EFPH=EF?PF=,即:四邊形EFPH的面積是.【點睛】本題綜合考查了矩形的判定與性質(zhì)、勾股定理及其逆定理、平行四邊形的性質(zhì)和判定,三角形的面積等知識點的運用,主要培養(yǎng)學(xué)生分析問題和解決問題的能力,此題綜合性比較強,題型較好,難度也適中.22、(1)填表見解析;(2)七年級代表隊成績好些;(3)七年級代表隊選手成績較為穩(wěn)定.【解析】
(1)根據(jù)平均數(shù)、眾數(shù)和中位數(shù)的定義分別進行解答即可;(2)根據(jù)表格中的數(shù)據(jù),可以結(jié)合兩個年級成績的平均數(shù)和中位數(shù),說明哪個隊的決賽成績較好;(3)根據(jù)方差公式先求出八年級的方差,再根據(jù)方差的意義即可得出答案.【詳解】(1)八年級的平均成績是:(75+80+85+85+100)÷5=85(分);85出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是85分;把八年級的成績從小到大排列,則中位數(shù)是80分;填表如下:平均數(shù)(分)中位數(shù)(分)眾數(shù)(分)初二858585初三8580100(2)七年級代表隊成績好些.∵兩個隊的平均數(shù)都相同,七年級代表隊中位數(shù)高,∴七年級代表隊成績好些.(3)S八年級2=[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160;∵S七年級2<S八年級2,∴七年級代表隊選手成績較為穩(wěn)定.【點睛】本題考查了方差:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.也考查了中位數(shù)和眾數(shù).23、(1)70,6;(2)從標準分來看,甲同學(xué)數(shù)學(xué)比英語考得更好.【解析】
(1)由平均數(shù)、標準差的公式計算即可;(2)代入公式:標準分=(個人成績-平均成績)÷成績標準差,再比較即可.【詳解】(1)數(shù)學(xué)平均分為=(71+72+69+68+70)÷5=70分,英語考試成績的標準差:==6分(2)設(shè)甲同學(xué)數(shù)學(xué)考試成績的標準分為P數(shù)學(xué),英語考試成績的標準分為,則=(71-70)÷,=(88-85)÷6=.∵,∴從標準分來看,甲同學(xué)數(shù)學(xué)比英語考得更好.【點睛】本題考查平均數(shù)和標準差的計算,解題關(guān)鍵是熟記公式.24、(1)見解析;(2)CD,BD,有一個角是直角的平行四邊形是矩形【解析】
(1)根據(jù)作法畫出對應(yīng)的幾何圖形即可;
(2)先利用作圖證明△ABC≌△DCB,得AB∥CD,根據(jù)一組對邊平行且相等的四邊形是平行四邊形,由有一個角是直角的平行四邊形是矩形可得結(jié)論.【詳解】解:(1)如圖1,四邊形ABCD為所作;
(2)完成下面的證明:
證明:如圖2,連接BD.
∵AB=CD,AC=BD,BC=BC,
∴△ABC≌△DCB(SSS).
∴∠ABC=∠DCB=90°.
∴AB∥CD.
∴四邊形ABCD是平行四邊形.
∵∠ABC=90°
∴四邊形ABCD是矩形.(有一個角是直角的平行四邊形是矩形)
故答案為:CD,BD,有一個角是直角的平行四邊形是矩形.【點睛】本題考查了作圖-復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.也考查了平行四邊形和矩形的判定方法.25、(1);(2)5;(3)【解析】
(1)用待定系數(shù)法可求直線AB的解析式,由平移的性質(zhì)可設(shè)直線A'B'的解析式為:,將點P坐標代入可求直線A′B′的解析式;
(2)由P(6,4),B(6,0),點B'坐標(9,0)可得BP⊥B'B,BP=4,BB'=3,由勾股定理可求B'P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 疫情答題活動策劃方案(3篇)
- 體育股內(nèi)部管理制度(3篇)
- 2026福建海峽人力資源股份有限公司漳州分公司招聘1人參考考試題庫及答案解析
- 2026北京積水潭醫(yī)院聊城醫(yī)院博士研究生引進22人考試參考題庫及答案解析
- 2026廣西柳州市柳北區(qū)雅儒街道辦事處招聘公益性崗位人員1人筆試模擬試題及答案解析
- 2026年河北大學(xué)附屬醫(yī)院公開選聘工作人員備考考試題庫及答案解析
- 電磁感應(yīng)補充題目
- 2026浙江浙建好房子裝飾科技有限公司招聘參考考試題庫及答案解析
- 2026西藏昌都市八宿縣發(fā)展改革和經(jīng)信商務(wù)局招聘專業(yè)技術(shù)人員1人考試備考題庫及答案解析
- 九江市公安局柴桑分局2026年度公開招聘警務(wù)輔助人員備考考試題庫及答案解析
- 學(xué)霸寒假語文閱讀集訓(xùn)五年級答案
- 2025年復(fù)旦三位一體浙江筆試及答案
- 財務(wù)先進個人代表演講稿
- 年度得到 · 沈祖蕓全球教育報告(2024-2025)
- DB23T 2689-2020養(yǎng)老機構(gòu)院內(nèi)感染預(yù)防控制規(guī)范
- 2025屆天津市和平區(qū)名校高三最后一模語文試題含解析
- 專業(yè)律師服務(wù)合同書樣本
- 建筑施工現(xiàn)場污水處理措施方案
- 學(xué)生計算錯誤原因分析及對策
- 送貨單格式模板
- 防止激情違紀和犯罪授課講義
評論
0/150
提交評論