牡丹江大學《基礎視覺設計》2023-2024學年第二學期期末試卷_第1頁
牡丹江大學《基礎視覺設計》2023-2024學年第二學期期末試卷_第2頁
牡丹江大學《基礎視覺設計》2023-2024學年第二學期期末試卷_第3頁
牡丹江大學《基礎視覺設計》2023-2024學年第二學期期末試卷_第4頁
牡丹江大學《基礎視覺設計》2023-2024學年第二學期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁牡丹江大學

《基礎視覺設計》2023-2024學年第二學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、圖像分割是將圖像分成不同的區(qū)域,每個區(qū)域具有相似的特征。假設要對醫(yī)學圖像進行器官分割,以下關于圖像分割方法的描述,哪一項是不正確的?()A.基于閾值的分割方法簡單直接,但對于復雜圖像效果往往不佳B.基于邊緣檢測的分割方法通過尋找圖像中的邊緣來劃分區(qū)域,但容易受到噪聲影響C.基于深度學習的語義分割方法能夠?qū)崿F(xiàn)像素級別的分類,效果較好,但計算量較大D.圖像分割只適用于灰度圖像,對于彩色圖像無法進行有效的分割2、在一個基于計算機視覺的智能交通監(jiān)控系統(tǒng)中,需要對車輛的類型、速度和行駛軌跡進行分析。以下哪種技術在車輛分析方面可能發(fā)揮關鍵作用?()A.目標檢測和跟蹤B.車牌識別C.軌跡預測D.以上都是3、計算機視覺中的全景圖像拼接是將多個視角的圖像組合成一個全景圖像。假設我們有一組用普通相機拍攝的場景照片,要拼接成一個無縫的全景圖,以下哪個步驟對于拼接的質(zhì)量影響最大?()A.特征點提取和匹配B.圖像融合和過渡處理C.相機參數(shù)估計和校正D.圖像的裁剪和縮放4、在計算機視覺的動作識別任務中,區(qū)分不同的人體動作。假設要從一段視頻中識別出一個人是在跑步還是走路,以下關于動作識別方法的描述,正確的是:()A.基于骨架信息的動作識別方法對人體姿態(tài)的微小變化不敏感B.只考慮動作的空間特征就能準確識別不同的動作C.融合時空特征和深度學習模型能夠提升動作識別的準確率D.動作識別的結(jié)果不受視頻拍攝角度和背景干擾的影響5、在計算機視覺的目標跟蹤任務中,假設要在一段視頻中持續(xù)跟蹤一個移動的物體,例如跟蹤一只飛行的鳥。物體可能會被其他物體遮擋,并且外觀可能會發(fā)生變化。以下哪種目標跟蹤方法在這種復雜情況下更有可能成功?()A.基于卡爾曼濾波的跟蹤方法,預測物體的位置和速度B.基于深度學習的Siamese網(wǎng)絡跟蹤方法C.只在視頻的起始幀確定目標位置,后續(xù)幀不再跟蹤D.隨機選擇視頻中的區(qū)域作為跟蹤目標6、在計算機視覺的圖像去模糊任務中,需要恢復由于相機抖動或物體運動導致的模糊圖像。假設一張夜景照片由于長時間曝光而模糊,同時存在噪聲和低光照條件。以下哪種圖像去模糊算法在處理這種情況時效果較好?()A.盲去卷積算法B.基于正則化的去模糊算法C.深度學習的去模糊模型D.頻域去模糊方法7、圖像分類是計算機視覺的常見應用之一。考慮一個需要對大量自然風景圖片進行分類的任務,這些圖片包含了不同的季節(jié)、地理位置和天氣條件。為了提高分類準確率,以下哪種預處理操作可能最為有效?()A.對圖像進行裁剪和縮放,使其具有統(tǒng)一的尺寸B.對圖像進行直方圖均衡化,增強對比度C.將圖像轉(zhuǎn)換為灰度圖像,減少顏色信息的干擾D.對圖像進行隨機旋轉(zhuǎn)和翻轉(zhuǎn),增加數(shù)據(jù)多樣性8、在計算機視覺的發(fā)展中,模型的可解釋性是一個重要的研究方向。以下關于模型可解釋性的描述,不準確的是()A.模型可解釋性旨在理解模型是如何做出決策和生成輸出的B.可解釋性對于建立用戶對模型的信任和確保模型的公正性具有重要意義C.一些可視化技術,如特征圖可視化和類激活映射,可以幫助解釋模型的決策過程D.目前的計算機視覺模型都具有良好的可解釋性,能夠清晰地解釋其決策依據(jù)9、假設要構(gòu)建一個能夠?qū)嬜髌愤M行真?zhèn)舞b定的計算機視覺系統(tǒng),需要對作品的筆觸、線條和風格等特征進行分析。以下哪種技術在書畫鑒定中可能具有應用前景?()A.筆跡分析B.風格遷移C.圖像風格分析D.以上都是10、在計算機視覺的應用中,人臉識別是一個常見的任務。假設一個公司要建立一個門禁系統(tǒng),通過人臉識別來允許員工進入。為了提高人臉識別的準確性和魯棒性,以下哪種技術通常會被采用?()A.基于幾何特征的人臉識別B.基于模板匹配的人臉識別C.基于深度學習的人臉識別,結(jié)合多模態(tài)數(shù)據(jù)D.基于顏色特征的人臉識別11、計算機視覺中的動作識別是對視頻中的人體動作進行分類和理解。假設我們要分析一段體育比賽的視頻,識別其中運動員的各種動作,以下哪種方法能夠有效地捕捉動作的時空特征?()A.基于手工特征和分類器的方法B.基于深度學習的時空卷積網(wǎng)絡C.基于光流和軌跡的方法D.基于隱馬爾可夫模型的方法12、當進行圖像的顯著性檢測時,假設要從一張復雜的圖像中突出顯示出人們視覺上最關注的區(qū)域,例如在一張風景圖像中突出顯示出一座顯眼的山峰。以下哪種方法在計算圖像的顯著性時可能更準確?()A.基于頻率域分析的方法,計算圖像的頻譜特征B.基于對比度的方法,比較區(qū)域與周圍的差異C.隨機選擇圖像中的部分區(qū)域作為顯著性區(qū)域D.不進行任何計算,主觀判斷顯著性區(qū)域13、假設我們要開發(fā)一個計算機視覺系統(tǒng),用于檢測生產(chǎn)線上產(chǎn)品的表面缺陷。由于產(chǎn)品的種類繁多、缺陷類型復雜,以下哪種方法可能需要更多的計算資源和時間來訓練模型?()A.基于傳統(tǒng)機器學習的方法B.基于淺層神經(jīng)網(wǎng)絡的方法C.基于深度學習的方法D.基于模板匹配的方法14、計算機視覺在安防監(jiān)控領域有重要應用。假設要通過攝像頭監(jiān)控一個公共場所,以下關于計算機視覺在安防監(jiān)控中的應用描述,哪一項是不正確的?()A.可以實時檢測異常行為,如人群聚集、奔跑等B.能夠?qū)θ藛T進行身份識別和認證C.計算機視覺系統(tǒng)可以獨立完成所有的安防監(jiān)控任務,不需要人工干預D.與其他安防設備和系統(tǒng)集成,提高整體的安全性和防范能力15、計算機視覺中的圖像分割任務旨在將圖像分割成不同的區(qū)域。假設要對一張風景圖片進行分割,區(qū)分天空、陸地和水面。以下關于圖像分割方法的描述,哪一項是錯誤的?()A.基于閾值的分割方法簡單快速,但對于復雜圖像效果不佳B.區(qū)域生長法從種子點開始,逐步合并相似的區(qū)域C.深度學習中的全卷積網(wǎng)絡(FCN)在圖像分割中表現(xiàn)出色,能夠生成精確的分割結(jié)果D.圖像分割的結(jié)果總是清晰明確,不存在模糊或錯誤的邊界16、計算機視覺中的場景理解是理解圖像或視頻中的場景內(nèi)容和語義信息。假設要理解一張城市街道的圖像,以下關于場景理解方法的描述,哪一項是不正確的?()A.可以通過對象檢測、語義分割和場景分類等任務來實現(xiàn)場景理解B.結(jié)合上下文信息和先驗知識能夠提高場景理解的準確性C.深度學習模型能夠?qū)W習場景中的全局特征和關系,實現(xiàn)對場景的深入理解D.場景理解可以在沒有任何先驗知識和上下文信息的情況下,準確地推斷出場景的語義17、在計算機視覺的圖像去噪任務中,假設要去除一張受到嚴重噪聲污染的圖像中的噪聲。以下關于圖像去噪方法的描述,正確的是:()A.中值濾波能夠有效地去除椒鹽噪聲,但會使圖像變得模糊B.均值濾波在去除噪聲的同時能夠很好地保留圖像的細節(jié)信息C.小波變換去噪方法計算復雜度高,不適合處理大規(guī)模圖像D.所有的圖像去噪方法都能夠完全恢復出原始的無噪圖像18、計算機視覺中的圖像修復旨在恢復圖像中缺失或損壞的部分。假設一張珍貴的老照片有部分區(qū)域損壞,需要進行修復以還原其完整的內(nèi)容。以下哪種圖像修復方法在處理這種情況時能夠生成更自然和逼真的結(jié)果?()A.基于擴散的圖像修復B.基于紋理合成的圖像修復C.基于深度學習的圖像修復D.基于樣例的圖像修復19、計算機視覺中,以下哪種技術常用于圖像的超分辨率重建的損失函數(shù)?()A.L1損失B.L2損失C.感知損失D.以上都是20、在計算機視覺的立體視覺任務中,通過兩個或多個相機獲取的圖像來計算深度信息。以下哪種立體匹配算法在精度和效率方面可能表現(xiàn)較好?()A.基于區(qū)域的匹配算法B.基于特征的匹配算法C.基于深度學習的匹配算法D.以上都是二、簡答題(本大題共5個小題,共25分)1、(本題5分)說明計算機視覺在智能養(yǎng)殖中的應用。2、(本題5分)計算機視覺中如何進行公證服務中的身份驗證?3、(本題5分)簡述計算機視覺中三維重建的原理和方法。4、(本題5分)說明計算機視覺中對抗攻擊對模型的影響和防御方法。5、(本題5分)解釋計算機視覺中的無監(jiān)督學習在圖像分割中的應用。三、分析題(本大題共5個小題,共25分)1、(本題5分)分析蘋果手機的用戶界面設計,包括圖標設計、色彩搭配和交互方式。探討其簡潔、直觀的設計如何提升用戶體驗。2、(本題5分)剖析某藝術展覽的宣傳視頻設計,討論其如何通過視覺效果和解說詞展示展覽的魅力和藝術價值。3、(本題5分)選取一個旅游景區(qū)的門票設計,分析其視覺效果、信息傳達和收藏價值,討論如何提高景區(qū)的形象和游客的滿意度。4、(本題5分)以某品牌的產(chǎn)品展示設計為例,說明其如何運用陳列方式、燈光和背景設計

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論