版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省三人行名校聯(lián)盟2025年高二數(shù)學(xué)第二學(xué)期期末考試模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在我國南北朝時期,數(shù)學(xué)家祖暅在實踐的基礎(chǔ)上提出了體積計算的原理:“冪勢既同,則積不容異”.其意思是,用一組平行平面截兩個幾何體,若在任意等高處的截面面積都對應(yīng)相等,則兩個幾何體的體積必然相等.根據(jù)祖暅原理,“兩幾何體A、B的體積不相等”是“A、B在等高處的截面面積不恒相等”的()條件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要2.若函數(shù)=sinxcosx,x∈R,則函數(shù)的最小值為A. B. C. D.3.已知拋物線和直線,過點且與直線垂直的直線交拋物線于兩點,若點關(guān)于直線對稱,則()A.1 B.2 C.4 D.64.如圖所示,這是一個幾何體的三視圖,則該幾何體的體積為()A. B. C. D.5.已知為定義在上的奇函數(shù),當(dāng)時,,則的值域為()A. B.C. D.6.如圖是“向量的線性運算”知識結(jié)構(gòu),如果要加入“三角形法則”和“平行四邊形法則”,應(yīng)該放在()A.“向量的加減法”中“運算法則”的下位B.“向量的加減法”中“運算律”的下位C.“向量的數(shù)乘”中“運算法則”的下位D.“向量的數(shù)乘”中“運算律”的下位7.設(shè)銳角的三個內(nèi)角的對邊分別為且,,則周長的取值范圍為()A. B. C. D.8.用數(shù)學(xué)歸納法證明等式時,第一步驗證時,左邊應(yīng)取的項是()A.1 B. C. D.9.設(shè)函數(shù)是定義在實數(shù)集上的奇函數(shù),在區(qū)間上是增函數(shù),且,則有()A. B.C. D.10.設(shè)滿足約束條件,則的最大值是()A.-3 B.2 C.4 D.611.在底面為正方形的四棱錐中,平面,,則異面直線與所成的角是()A. B. C. D.12.一盒中裝有5張彩票,其中2張有獎,3張無獎,現(xiàn)從此盒中不放回地抽取2次,每次抽取一張彩票.設(shè)第1次抽出的彩票有獎的事件為A,第2次抽出的彩票有獎的事件為B,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若,則的值是_____.14.由曲線,坐標(biāo)軸及直線圍成的圖形的面積等于______。15.連續(xù)3次拋擲一枚質(zhì)地均勻的硬幣,在至少有一次出現(xiàn)正面向上的條件下,恰有一次出現(xiàn)反面向上的概率為.16.學(xué)校某研究性學(xué)習(xí)小組在對學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時間(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)時,圖象是二次函數(shù)圖象的一部分,其中頂點,過點;當(dāng)時,圖象是線段BC,其中.根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時,學(xué)習(xí)效果最佳.要使得學(xué)生學(xué)習(xí)效果最佳,則教師安排核心內(nèi)容的時間段為____________.(寫成區(qū)間形式)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)在其定義域內(nèi)有兩個不同的極值點.(1)求的取值范圍;(2)試比較與的大小,并說明理由;(3)設(shè)的兩個極值點為,證明.18.(12分)某海濕地如圖所示,A、B和C、D分別是以點O為中心在東西方向和南北方向設(shè)置的四個觀測點,它們到點O的距離均為公里,實線PQST是一條觀光長廊,其中,PQ段上的任意一點到觀測點C的距離比到觀測點D的距離都多8公里,QS段上的任意一點到中心點O的距離都相等,ST段上的任意一點到觀測點A的距離比到觀測點B的距離都多8公里,以O(shè)為原點,AB所在直線為x軸建立平面直角坐標(biāo)系xOy.(1)求觀光長廊PQST所在的曲線的方程;(2)在觀光長廊的PQ段上,需建一服務(wù)站M,使其到觀測點A的距離最近,問如何設(shè)置服務(wù)站M的位置?19.(12分)(理科學(xué)生做)某一智力游戲玩一次所得的積分是一個隨機(jī)變量,其概率分布如下表,數(shù)學(xué)期望.(1)求a和b的值;(2)某同學(xué)連續(xù)玩三次該智力游戲,記積分X大于0的次數(shù)為Y,求Y的概率分布與數(shù)學(xué)期望.X036Pab20.(12分)已知函數(shù).求不等式的解集;若,求實數(shù)的取值范圍.21.(12分)在中,角所對的邊長分別為,且滿足.(Ⅰ)求的大?。唬á颍┤舻拿娣e為,求的值.22.(10分)已知函數(shù).(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)在上為減函數(shù),求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
先閱讀題意,再由原命題與其逆否命題的真假及充分必要條件可得解【詳解】由已知有”在任意等高處的截面面積都對應(yīng)相等”是“兩個幾何體的體積必然相等“的充分條件不必要條件,結(jié)合原命題與其逆否命題的真假可得:“兩幾何體A、B的體積不相等”是“A、B在等高處的截面面積不恒相等”的充分不必要條件,故選:A.本題考查了閱讀能力、原命題與其逆否命題的真假及充分必要條件,屬中檔題。2、B【解析】∵函數(shù),∴函數(shù)的最小值為故選B3、B【解析】
由于直線與直線垂直,且直線的斜率為1,所以直線的斜率為,而直線過點,所以可求出直線的方程,將直線的方程與拋物線方程聯(lián)立成方程組,求出的中點坐標(biāo),然后將其坐標(biāo)代入中可求出的值.【詳解】解:由題意可得直線的方程為,設(shè),由,得,所以,所以的中點坐標(biāo)為,因為點關(guān)于直線對稱,所以,解得故選:B此題考查直線與拋物線的位置關(guān)系,點關(guān)于直線的對稱問題,屬于基礎(chǔ)題.4、A【解析】由三視圖可知:該幾何體分為上下兩部分,下半部分是長、寬、高分別為的長方體,上半部分為底面半徑為1,高為2的兩個半圓柱,故其體積為,故選A.5、A【解析】
先用基本不等式求時函數(shù)的值域,然后利用函數(shù)奇偶性的性質(zhì)即可得到整個函數(shù)的值域.【詳解】當(dāng)時,(當(dāng)且僅當(dāng)時取等號),又為奇函數(shù),當(dāng)x<0時,,則的值域為.故選:A.本題考查函數(shù)奇偶性的應(yīng)用,考查利用基本不等式求函數(shù)最值問題,屬于基礎(chǔ)題.6、A【解析】
由“三角形法則”和“平行四邊形法則”是向量的加減法的運算法則,由此易得出正確選項.【詳解】因為“三角形法則”和“平行四邊形法則”是向量的加減法的運算法則,故應(yīng)該放在“向量的加減法”中“運算法則”的下位.故選A.本題考查知識結(jié)構(gòu)圖,向量的加減法的運算法則,知識結(jié)構(gòu)圖比較直觀地描述了知識之間的關(guān)聯(lián),解題的關(guān)鍵是理解知識結(jié)構(gòu)圖的作用及知識之間的上下位關(guān)系.7、C【解析】因為△為銳角三角形,所以,,,即,,,所以,;又因為,所以,又因為,所以;由,即,所以,令,則,又因為函數(shù)在上單調(diào)遞增,所以函數(shù)值域為,故選C點睛:本題解題關(guān)鍵是利用正弦定理實現(xiàn)邊角的轉(zhuǎn)化得到周長關(guān)于角的函數(shù)關(guān)系,借助二次函數(shù)的單調(diào)性求最值,易錯點是限制角的取值范圍.8、D【解析】由數(shù)學(xué)歸納法的證明步驟可知:當(dāng)時,等式的左邊是,應(yīng)選答案D.9、A【解析】
由題意可得,,再利用函數(shù)在區(qū)間上是增函數(shù)可得答案.【詳解】解:為奇函數(shù),,又,,又,且函數(shù)在區(qū)間上是增函數(shù),,,故選A.本題考查利用函數(shù)的單調(diào)性、奇偶性比較函數(shù)值的大小,考查利用知識解決問題的能力.10、D【解析】
先由約束條件畫出可行域,再利用線性規(guī)劃求解.【詳解】如圖即為,滿足約束條件的可行域,由,解得,由得,由圖易得:當(dāng)經(jīng)過可行域的時,直線的縱截距最大,z取得最大值,所以的最大值為6,故選.本題主要考查線性規(guī)劃求最值,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.11、B【解析】
底面ABCD為正方形,PA⊥平面ABCD,分別過P,D點作AD,AP的平行線交于M,連接CM,AM,因為PB∥CM,所以就是異面直線PB與AC所成的角.【詳解】解:由題意:底面ABCD為正方形,PA⊥平面ABCD,分別過P,D點作AD,AP的平行線交于M,連接CM,AM,
.
∴PBCM是平行四邊形,
∴PB∥CM,
所以∠ACM就是異面直線PB與AC所成的角.
設(shè)PA=AB=,在三角形ACM中,
∴三角形ACM是等邊三角形.
所以∠ACM等于60°,即異面直線PB與AC所成的角為60°.
故選:B.本題考查了兩條異面直線所成的角的證明及求法.屬于基礎(chǔ)題.12、D【解析】
由題意,第1次抽出的彩票有獎,剩下4張彩票,其中1張有獎,3張無獎,即可求出.【詳解】由題意,第1次抽出的彩票有獎,剩下4張彩票,其中1張有獎,3張無獎,所以.故選:D.本題考查條件概率,考查學(xué)生的計算能力,比較基礎(chǔ).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
當(dāng)時,,求出;當(dāng)時,無解.從而,由此能求出結(jié)果.【詳解】解:由時,是減函數(shù)可知,當(dāng),則,所以,由得,解得,則.故答案為:.本題考查函數(shù)值的求法,屬于基礎(chǔ)題.14、1【解析】
根據(jù)定積分求面積【詳解】.本題考查利用定積分求面積,考查基本分析求解能力,屬基礎(chǔ)題.15、【解析】試題分析:至少有一次正面向上的概率為,恰有一次出現(xiàn)反面向上的概率為,那么滿足題意的概率為.考點:古典概型與排列組合.16、【解析】
利用待定系數(shù)法求出分段函數(shù)的解析式,再由y值大于62求解即可得解.【詳解】當(dāng)x∈(0,12]時,設(shè)f(x)=a(x﹣10)2+80,過點(12,78)代入得,a則f(x)(x﹣10)2+80,當(dāng)x∈(12,40]時,設(shè)y=kx+b,過點B(12,78)、C(40,50)得,即y=﹣x+90,由題意得,或得4<x≤12或12<x<28,所以4<x<28,則老師就在x∈(4,28)時段內(nèi)安排核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳,故答案為(4,28).本題主要考查了待定系數(shù)法求函數(shù)解析式及分段函數(shù)解不等式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);理由見解析;(3)證明見解析【解析】
(1)根據(jù)函數(shù)在定義域內(nèi)有兩個不同極值點可知方程有兩個不等正根,將問題轉(zhuǎn)化為與在上有兩個不同交點;利用過一點曲線的切線的求解方法可求出過原點與相切的直線的斜率,從而可得,解不等式求得結(jié)果;(2)令,求導(dǎo)后可知在上單調(diào)遞減,從而可得,化簡可得;(3)易知是方程的兩根,令,可整理得到,從而將所證不等式化為,采用換元的方式可知只需證,恒成立;構(gòu)造函數(shù),,利用導(dǎo)數(shù)可知在上單調(diào)遞增,可得,進(jìn)而證得結(jié)論.【詳解】(1)由題意得:定義域為;在上有兩個不同極值點等價于方程有兩個不等正根即:與在有兩個不同的交點設(shè)過的的切線與相切于點則切線斜率,解得:過的的切線的斜率為:,解得:即的取值范圍為:(2)令,則時,;時,在上單調(diào)遞增;在上單調(diào)遞減,即:即:(3)由(1)知,是方程的兩根即:,設(shè),則原不等式等價于:即:設(shè),則,只需證:,設(shè),在上單調(diào)遞增即在上恒成立所證不等式成立本題考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,涉及到根據(jù)極值點個數(shù)求解參數(shù)范圍、通過構(gòu)造函數(shù)的方式比較大小、利用導(dǎo)數(shù)證明不等式的問題;利用導(dǎo)數(shù)證明不等式的關(guān)鍵是能夠?qū)⑺C不等式轉(zhuǎn)化為與兩個極值點有關(guān)的函數(shù)的最值的求解問題,通過求解最值可確定不等關(guān)系.18、(1)(2)【解析】
(1)由題意知,QS的軌跡為圓的一部分,PQ的軌跡為雙曲線的一部分,ST的軌跡為雙曲線的一部分,分別求出對應(yīng)的軌跡方程即可;(2)由題意設(shè)點M(x,y),計算|MA|2的解析式,再求|MA|的最小值與對應(yīng)的x、y的值.【詳解】解:(1)①由題意知,QS段上的任意一點到中心點O的距離都相等,QS的軌跡為圓的一部分,其中r=4,圓心坐標(biāo)為O,即x≥0、y≥0時,圓的方程為x2+y2=16;②PQ段上的任意一點到觀測點C的距離比到觀測點D的距離都多8公里,PQ的軌跡為雙曲線的一部分,且c=4,a=4,即x<0、y>0時,雙曲線方程為1;③ST段上的任意一點到觀測點A的距離比到觀測點B的距離都多8公里,ST的軌跡為雙曲線的一部分,且c=4,a=4,即x>0、y<0時,雙曲線方程為1;綜上,x≥0、y≥0時,曲線方程為x2+y2=16;x<0、y>0時,曲線方程為1;x>0、y<0時,曲線方程為1;[注]可合并為1;(2)由題意設(shè)點M(x,y),其中1,其中x≤0,y≥0;則|MA|2y2x2+16=232;當(dāng)且僅當(dāng)x=﹣2時,|MA|取得最小值為4;此時y=42;∴點M(﹣2,2).本題考查了圓、雙曲線的定義與標(biāo)準(zhǔn)方程的應(yīng)用問題,解題的關(guān)鍵是利用定義求出雙曲線和圓的標(biāo)準(zhǔn)方程.19、(1).(2)分布列見解析,.【解析】分析:(1)根據(jù)分布列的性可知所有的概率之和為1然后再根據(jù)期望的公式得到第二個方程聯(lián)立求解即可;(2)根據(jù)二項分布求解即可.詳解:(1)因為,所以,即.①又,得.②聯(lián)立①,②解得,.(2),依題意知,故,,,.故的概率分布為的數(shù)學(xué)期望為.點睛:考查分布列的性質(zhì),二項分布,認(rèn)真審題,仔細(xì)計算是解題關(guān)鍵,屬于基礎(chǔ)題.20、(1)(2)【解析】
(1)可先將寫成分段函數(shù)的形式,從而求得解集;(2)等價于,令,故即可,從而求得答案.【詳解】(1)根據(jù)題意可知:,當(dāng)時,即,解得;當(dāng)時,即,解得;當(dāng)時,即,解得.綜上,不等式的解集為;(2)等價于,令,故即可,①當(dāng)時,,此時;②當(dāng)時,,此時;當(dāng)時,,此時;綜上所述,,故,即實數(shù)的取值范
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基礎(chǔ)會計選擇題目及答案
- 辦公軟件授權(quán)協(xié)議(2025年使用權(quán))
- 2025年河北省公需課學(xué)習(xí)-環(huán)境保護(hù)稅征收管理實務(wù)487
- 2025年湖南各市遴選真題及答案
- 考試??碱}型試卷及答案
- 人大企管復(fù)試真題及答案
- 企業(yè)招聘管理真題及答案
- 外匯買賣合同范本
- 2025年專四語法知識題庫及答案
- 金融入職筆試題庫及答案
- 珠海市紀(jì)委監(jiān)委公開招聘所屬事業(yè)單位工作人員12人考試題庫附答案
- 2025內(nèi)蒙古鄂爾多斯東勝區(qū)消防救援大隊招聘鄉(xiāng)鎮(zhèn)(街道)消防安全服務(wù)中心專職工作人員招聘3人考試筆試模擬試題及答案解析
- 2025濟(jì)寧市檢察機(jī)關(guān)招聘聘用制書記員(31人)筆試考試參考試題及答案解析
- 2025年安全總監(jiān)年終總結(jié)報告
- 安順市人民醫(yī)院招聘聘用專業(yè)技術(shù)人員筆試真題2024
- 廚師專業(yè)職業(yè)生涯規(guī)劃與管理
- 2025年10月自考00688設(shè)計概論試題及答案
- 六西格瑪設(shè)計實例
- 海南檳榔承包協(xié)議書
- 工業(yè)交換機(jī)產(chǎn)品培訓(xùn)
- 2025浙江溫州市龍港市國有企業(yè)招聘產(chǎn)業(yè)基金人員3人筆試歷年備考題庫附帶答案詳解試卷3套
評論
0/150
提交評論