中國礦業(yè)大學《展示空間與設計》2023-2024學年第二學期期末試卷_第1頁
中國礦業(yè)大學《展示空間與設計》2023-2024學年第二學期期末試卷_第2頁
中國礦業(yè)大學《展示空間與設計》2023-2024學年第二學期期末試卷_第3頁
中國礦業(yè)大學《展示空間與設計》2023-2024學年第二學期期末試卷_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

站名:站名:年級專業(yè):姓名:學號:凡年級專業(yè)、姓名、學號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁中國礦業(yè)大學

《展示空間與設計》2023-2024學年第二學期期末試卷題號一二三四總分得分一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的應用于工業(yè)檢測中,需要檢測產品表面的缺陷和瑕疵。假設我們要檢測手機屏幕上的劃痕和亮點,以下哪種方法能夠實現快速、準確的缺陷檢測,并且適應不同的產品批次和生產環(huán)境?()A.基于機器視覺的傳統(tǒng)檢測方法,結合閾值和形態(tài)學操作B.基于深度學習的目標檢測算法,針對缺陷進行訓練C.基于紋理分析和模式識別的方法D.基于光學原理和物理模型的檢測方法2、當進行圖像的顯著性檢測時,假設要從一張復雜的圖像中突出顯示出人們視覺上最關注的區(qū)域,例如在一張風景圖像中突出顯示出一座顯眼的山峰。以下哪種方法在計算圖像的顯著性時可能更準確?()A.基于頻率域分析的方法,計算圖像的頻譜特征B.基于對比度的方法,比較區(qū)域與周圍的差異C.隨機選擇圖像中的部分區(qū)域作為顯著性區(qū)域D.不進行任何計算,主觀判斷顯著性區(qū)域3、在計算機視覺的目標跟蹤任務中,目標可能會被遮擋、變形或快速移動。假設要跟蹤一個在人群中快速移動的人物,以下哪種跟蹤算法可能更適合應對這種復雜情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于均值漂移的跟蹤算法D.基于模板匹配的跟蹤算法4、在計算機視覺中,特征提取是非常關鍵的一步。假設我們要對一組風景圖像進行特征提取,以便后續(xù)的圖像檢索和分類任務。以下哪種特征提取方法能夠捕捉到圖像的全局和局部特征,并且對圖像的旋轉、縮放等變換具有較好的不變性?()A.尺度不變特征變換(SIFT)B.方向梯度直方圖(HOG)C.局部二值模式(LBP)D.卷積神經網絡自動學習的特征5、在一個基于計算機視覺的無人駕駛系統(tǒng)中,需要對道路場景進行理解和預測,例如判斷前方是否有行人橫穿馬路。為了實現準確的場景理解和預測,以下哪種技術可能是關鍵?()A.語義分割B.實例分割C.場景圖生成D.以上都是6、視頻理解是計算機視覺中的一個具有挑戰(zhàn)性的任務。以下關于視頻理解的敘述,不準確的是()A.視頻理解不僅需要分析每一幀圖像的內容,還需要考慮幀之間的時間關系B.循環(huán)神經網絡(RNN)和長短期記憶網絡(LSTM)在處理視頻序列數據時具有優(yōu)勢C.視頻理解在視頻監(jiān)控、行為分析和內容推薦等方面具有廣泛的應用前景D.目前的視頻理解技術已經能夠完全理解復雜場景下的視頻內容,不存在任何挑戰(zhàn)7、計算機視覺在無人駕駛飛行器(UAV)中的應用可以輔助飛行和導航。假設一架UAV需要依靠視覺信息避開障礙物,以下關于UAV計算機視覺應用的描述,正確的是:()A.僅依靠單目視覺就能準確估計障礙物的距離和速度B.視覺信息在UAV飛行中的作用有限,主要依靠其他傳感器如GPSC.多目視覺和深度學習算法的結合可以為UAV提供更準確的環(huán)境感知和障礙物避讓能力D.UAV的飛行速度和姿態(tài)對視覺系統(tǒng)的性能沒有影響8、假設要構建一個能夠對衛(wèi)星圖像進行地物分類的計算機視覺系統(tǒng),用于國土資源調查和環(huán)境監(jiān)測。由于衛(wèi)星圖像的分辨率較高且覆蓋范圍廣,以下哪種處理方式可能是必要的?()A.圖像分塊處理B.多尺度分析C.特征選擇和降維D.以上都是9、在計算機視覺的視頻分析中,假設要對一段監(jiān)控視頻中的異常行為進行檢測。以下關于特征提取的方法,哪一項是不太適合的?()A.提取每一幀圖像的顏色、紋理等低級特征B.利用光流信息來捕捉物體的運動特征C.僅分析視頻的音頻信息,忽略圖像內容D.結合時空特征,同時考慮空間和時間維度的信息10、計算機視覺中的目標重識別任務旨在在不同的攝像頭視角中識別出同一目標。假設要在一個大型商場的多個攝像頭中尋找一個特定的人物。以下關于目標重識別的描述,哪一項是不準確的?()A.可以通過提取目標的特征,如顏色、形狀和紋理,來進行重識別B.深度學習中的特征學習方法能夠提高目標重識別的準確率C.目標重識別不受攝像頭視角、光照和人物姿態(tài)變化的影響D.可以通過建立目標的特征庫,快速在多個攝像頭中進行匹配和搜索11、計算機視覺中的人臉識別技術應用廣泛。假設要在一個門禁系統(tǒng)中實現準確的人臉識別,以下關于人臉識別方法的描述,正確的是:()A.基于幾何特征的人臉識別方法對姿態(tài)和光照變化具有很強的魯棒性B.基于模板匹配的方法能夠處理大規(guī)模的人臉數據庫,并且識別速度快C.深度學習中的卷積神經網絡在人臉識別中能夠學習到更具判別性的特征,但容易受到數據偏差的影響D.人臉識別系統(tǒng)一旦訓練完成,就不需要更新和優(yōu)化,能夠一直保持高準確率12、在計算機視覺的立體視覺任務中,通過兩個或多個相機獲取的圖像來計算深度信息。以下哪種立體匹配算法在精度和效率方面可能表現較好?()A.基于區(qū)域的匹配算法B.基于特征的匹配算法C.基于深度學習的匹配算法D.以上都是13、在計算機視覺的三維重建任務中,假設要從一系列二維圖像重建出物體的三維模型。以下關于相機參數校準的重要性,哪一項是不正確的?()A.準確的相機參數有助于提高三維重建的精度B.相機參數校準可以減少重建過程中的誤差累積C.即使相機參數不準確,也能通過后續(xù)處理得到精確的三維模型D.不同相機的參數差異會影響三維重建的結果14、在計算機視覺中,圖像分類是一項重要任務。假設我們要對大量的動物圖片進行分類,將其分為貓、狗、鳥等類別。以下關于圖像分類方法的描述,哪一項是不準確的?()A.基于深度學習的卷積神經網絡(CNN)在圖像分類任務中表現出色,能夠自動學習圖像的特征B.傳統(tǒng)的機器學習方法如支持向量機(SVM)在處理大規(guī)模圖像數據時,性能通常不如深度學習方法C.圖像分類只需要考慮圖像的顏色和形狀等低層次特征,高層語義信息對分類結果影響不大D.為了提高分類準確率,可以使用數據增強技術,如旋轉、翻轉、裁剪等操作來擴充數據集15、計算機視覺中的光流計算用于估計圖像中像素的運動。假設要分析一段視頻中物體的運動速度和方向。以下關于光流計算的描述,哪一項是不準確的?()A.可以通過比較連續(xù)幀之間的像素差異來計算光流B.光流計算能夠為視頻中的目標跟蹤和行為分析提供重要信息C.無論視頻的幀率和分辨率如何,光流計算都能準確地估計像素運動D.深度學習方法也被應用于光流計算,提高了計算的準確性和效率16、計算機視覺在虛擬現實(VR)和增強現實(AR)中的應用可以提供更沉浸式的體驗。假設要在VR環(huán)境中實時跟蹤用戶的頭部運動并相應地更新場景,以下關于VR/AR計算機視覺應用的描述,正確的是:()A.簡單的基于傳感器的跟蹤方法能夠滿足VR中高精度的頭部運動跟蹤需求B.計算機視覺在VR/AR中的應用主要關注圖像生成,而不是跟蹤和定位C.結合視覺特征提取和深度學習的頭部運動跟蹤算法可以實現低延遲和高精度的跟蹤D.VR/AR環(huán)境中的光照條件和物體遮擋對計算機視覺算法的性能沒有影響17、當利用計算機視覺技術對醫(yī)學影像(如X光、CT等)進行分析,輔助醫(yī)生進行疾病診斷時,需要從大量的圖像數據中提取有價值的特征。以下哪種特征提取方法在醫(yī)學影像分析中可能具有較高的應用價值?()A.基于形狀的特征提取B.基于紋理的特征提取C.基于深度學習的自動特征學習D.基于顏色的特征提取18、計算機視覺中的全景圖像拼接是將多個視角的圖像組合成一個全景圖像。假設我們有一組用普通相機拍攝的場景照片,要拼接成一個無縫的全景圖,以下哪個步驟對于拼接的質量影響最大?()A.特征點提取和匹配B.圖像融合和過渡處理C.相機參數估計和校正D.圖像的裁剪和縮放19、視頻分析是計算機視覺的一個重要領域。假設我們要分析一段監(jiān)控視頻,以檢測異常行為,如打架、盜竊等。對于這種實時性要求較高的視頻分析任務,以下哪種方法更適合用于快速處理和檢測?()A.對每一幀圖像單獨進行分析B.基于光流的方法跟蹤對象運動C.利用深度學習模型直接對視頻進行分析D.采用傳統(tǒng)的圖像處理方法,如背景減除20、計算機視覺在無人駕駛中的應用需要應對各種復雜的環(huán)境和情況。假設無人駕駛汽車要在惡劣天氣下行駛,以下關于計算機視覺在無人駕駛中的挑戰(zhàn)的描述,哪一項是不正確的?()A.惡劣天氣會影響圖像的質量和清晰度,增加目標檢測和識別的難度B.計算機視覺系統(tǒng)需要與其他傳感器(如雷達和超聲波傳感器)融合,以提高在惡劣天氣下的感知能力C.深度學習模型在惡劣天氣條件下的性能會顯著下降,無法正常工作D.針對惡劣天氣,可以通過數據增強和模型優(yōu)化等方法提高計算機視覺系統(tǒng)的魯棒性21、計算機視覺中的場景文本識別旨在從圖像中識別出文字信息。假設要在一張街景圖像中識別出店鋪招牌上的文字。以下關于場景文本識別方法的描述,正確的是:()A.基于光學字符識別(OCR)技術的方法對字體和排版的變化適應性強,識別準確率高B.深度學習中的端到端文本識別模型能夠處理彎曲和變形的文本,但對模糊文本效果不佳C.場景文本識別只需要關注文本的內容,不需要考慮文本的位置和上下文信息D.所有的場景文本識別方法都能夠在復雜的自然場景中準確無誤地識別出各種文字22、在計算機視覺的研究中,數據集的質量和規(guī)模對模型的訓練和性能評估至關重要。以下關于數據集的描述,不準確的是()A.大規(guī)模、多樣化和標注準確的數據集有助于訓練出泛化能力強的模型B.一些公開的數據集如ImageNet、COCO等為計算機視覺研究提供了重要的基準C.數據集的構建需要耗費大量的時間和人力,但可以通過數據增強技術來減少對原始數據的需求D.數據集一旦構建完成,就不需要再進行更新和擴展,能夠一直滿足研究的需求23、在計算機視覺的圖像去模糊任務中,需要恢復由于相機抖動或物體運動導致的模糊圖像。假設一張夜景照片由于長時間曝光而模糊,同時存在噪聲和低光照條件。以下哪種圖像去模糊算法在處理這種情況時效果較好?()A.盲去卷積算法B.基于正則化的去模糊算法C.深度學習的去模糊模型D.頻域去模糊方法24、計算機視覺中的場景理解是對整個圖像場景的語義和結構進行分析和理解。以下關于場景理解的描述,不準確的是()A.場景理解需要綜合考慮物體、空間關系、上下文信息等多個方面B.可以通過構建場景圖來表示場景中的實體和關系,輔助場景理解C.場景理解在智能導航、虛擬環(huán)境構建和圖像編輯等領域具有潛在的應用價值D.場景理解是一個已經完全解決的問題,不存在任何技術難題25、在計算機視覺的人臉識別任務中,假設要實現一個能夠在不同光照和表情下準確識別的系統(tǒng)。以下關于數據預處理的步驟,哪一項是最重要的?()A.對人臉圖像進行歸一化處理,統(tǒng)一大小和亮度B.對圖像進行銳化處理,增強面部特征C.給圖像添加藝術效果,提高美觀度D.隨機裁剪圖像,增加數據多樣性二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述圖像的高斯濾波的特點。2、(本題5分)解釋計算機視覺中的目標跟蹤方法。3、(本題5分)說明計算機視覺在藝術創(chuàng)作和設計中的應用。4、(本題5分)說明計算機視覺在能源管理中的應用。三、分析題(本大題共5個小題,共25分)1、(本題5分)以某音樂節(jié)的門票設計為例,分析其獨特的設計風格、音樂元素、藝人形象如何吸引音樂愛好者購買。2、(本題5分)一款運動飲料的標簽設計突出了健康和活力的概念。請分析標簽在色彩選擇、圖形元素、文字說明上是如何傳達產品特性,并吸引目標消費者的。3、(本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論