新疆哈密石油中學2025屆數(shù)學高二下期末監(jiān)測模擬試題含解析_第1頁
新疆哈密石油中學2025屆數(shù)學高二下期末監(jiān)測模擬試題含解析_第2頁
新疆哈密石油中學2025屆數(shù)學高二下期末監(jiān)測模擬試題含解析_第3頁
新疆哈密石油中學2025屆數(shù)學高二下期末監(jiān)測模擬試題含解析_第4頁
新疆哈密石油中學2025屆數(shù)學高二下期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

新疆哈密石油中學2025屆數(shù)學高二下期末監(jiān)測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,則()A. B. C. D.2.下列三句話按“三段論”模式排列順序正確的是()①是周期函數(shù);②三角函數(shù)是周期函數(shù);③是三角函數(shù)A.②③① B.②①③ C.①②③ D.③②①3.設(shè)是偶函數(shù)的導函數(shù),當時,,則不等式的解集為()A. B.C. D.4.復數(shù)為虛數(shù)單位)的虛部為()A. B. C. D.5.離散型隨機變量X的分布列為,,2,3,則()A.14a B.6a C. D.66.已知全集U=R,A={x|x≤0},B={x|x≥1},則集合CUA.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}7.“大衍數(shù)列”來源于《乾坤譜》中對易傳“大衍之數(shù)五十”的推論,主要用于解釋中國傳統(tǒng)文化中的太極衍生原理.數(shù)列中的每一項,都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和,是中華傳統(tǒng)文化中隱藏著的世界數(shù)學史上第一道數(shù)列題.大衍數(shù)列前10項依次是0,2,4,8,12,18,24,32,40,50,…,則此數(shù)列第20項為()A.180 B.200 C.128 D.1628.若函數(shù)為奇函數(shù),則A. B. C. D.9.的展開式中的項的系數(shù)是()A. B. C. D.10.使不等式成立的一個必要不充分條件是()A. B. C. D.11.已知,且,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.甲、乙兩支女子曲棍球隊在去年的國際聯(lián)賽中,甲隊平均每場進球數(shù)為3.2,全年比賽進球個數(shù)的標準差為3;乙隊平均每場進球數(shù)為1.8,全年比賽進球數(shù)的標準差為0.3,下列說法中,正確的個數(shù)為()①甲隊的進球技術(shù)比乙隊好;②乙隊發(fā)揮比甲隊穩(wěn)定;③乙隊幾乎每場都進球;④甲隊的表現(xiàn)時好時壞.A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.定義在R上的偶函數(shù)f(x)滿足fx+8e=f(x),當x∈0,4e時,f(x)=ex-2,則函數(shù)g(x)=f(x)-lnx14.已知向量,,若與垂直,則的值為______.15.觀察下列各式:,,,,由此可猜想,若,則__________.16.過點(,)且與極軸平行的直線的極坐標方程是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)現(xiàn)有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.(Ⅰ)求這4個人中恰有2人去參加甲游戲的概率;(Ⅱ)求這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;(Ⅲ)用X,Y分別表示這4個人中去參加甲、乙游戲的人數(shù),記,求隨機變量的分布列與數(shù)學期望.18.(12分)已知函數(shù)在處取得極大值為.(1)求的值;(2)求曲線在處的切線方程.19.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).(1)當時,求直線與曲線的普通方程;(2)若直線與曲線交于兩點,直線的傾斜角范圍為,點為直線與軸的交點,求的最小值.20.(12分)[選修4-5:不等式選講]已知函數(shù)=|x-a|+(a≠0)(1)若不等式-≤1恒成立,求實數(shù)m的最大值;(2)當a<時,函數(shù)g(x)=+|2x-1|有零點,求實數(shù)a的取值范圍21.(12分)已知:已知函數(shù)(Ⅰ)若曲線y=f(x)在點P(2,f(2))處的切線的斜率為﹣6,求實數(shù)a;(Ⅱ)若a=1,求f(x)的極值;22.(10分)在平面直角坐標系中,橢圓,右焦點為.(1)若其長半軸長為,焦距為,求其標準方程.(2)證明該橢圓上一動點到點的距離的最大值是.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

通過分段法,根據(jù)指數(shù)函數(shù)、對數(shù)函數(shù)和三角函數(shù)的性質(zhì),判斷出,由此選出正確結(jié)論.【詳解】解:∵,,,;∴.故選C.本小題主要考查利用對數(shù)函數(shù)、指數(shù)函數(shù)和三角函數(shù)的性質(zhì)比較大小,考查分段法比較大小,屬于基礎(chǔ)題.2、A【解析】

根據(jù)“三段論”的排列模式:“大前提”“小前提”“結(jié)論”,分析即可得到正確的順序.【詳解】根據(jù)“三段論”的排列模式:“大前提”“小前提”“結(jié)論”,可知:①是周期函數(shù)是“結(jié)論”;②三角函數(shù)是周期函數(shù)是“大前提”;③是三角函數(shù)是“小前提”;故“三段論”模式排列順序為②③①.故選:A本題考查了演繹推理的模式,需理解演繹推理的概念,屬于基礎(chǔ)題.3、B【解析】

設(shè),計算,變換得到,根據(jù)函數(shù)的單調(diào)性和奇偶性得到,解得答案.【詳解】由題意,得,進而得到,令,則,,.由,得,即.當時,,在上是增函數(shù).函數(shù)是偶函數(shù),也是偶函數(shù),且在上是減函數(shù),,解得,又,即,.故選:.本題考查了利用函數(shù)的奇偶性和單調(diào)性解不等式,構(gòu)造函數(shù),確定其單調(diào)性和奇偶性是解題的關(guān)鍵.4、B【解析】

由虛數(shù)的定義求解.【詳解】復數(shù)的虛部是-1.故選:B.本題考查復數(shù)的概念,掌握復數(shù)的概念是解題基礎(chǔ).5、C【解析】

由離散型隨機變量X的分布列得a+2a+3a=1,從而,由此能求出E(X).【詳解】解:∵離散型隨機變量X的分布列為,,∴,解得,∴.故選:C.本題考查離散型隨機變量的數(shù)學期望的求法,考查離散型隨機變量的分布列、數(shù)學期望的等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.6、D【解析】試題分析:因為A∪B={x|x≤0或x≥1},所以CU考點:集合的運算.7、B【解析】根據(jù)前10項可得規(guī)律:每兩個數(shù)增加相同的數(shù),且增加的數(shù)構(gòu)成首項為2,公差為2的等差數(shù)列。可得從第11項到20項為60,72,84,98,112,128,144,162,180,200.所以此數(shù)列第20項為200.故選B?!军c睛】從前10個數(shù)觀察增長的規(guī)律。8、A【解析】分析:運用奇函數(shù)的定義,可得,再計算即可詳解:函數(shù)為奇函數(shù),故選點睛:本題主要考查的是奇函數(shù)的定義,分段函數(shù)的應用,屬于基礎(chǔ)題。根據(jù)函數(shù)奇偶性的性質(zhì)是解題的關(guān)鍵9、B【解析】

試題分析:的系數(shù),由的次項乘以,和的2次項乘以的到,故含的是,選.考點:二項式展開式的系數(shù).【方法點睛】二項式展開式在高考中是一個??键c.兩個式子乘積相關(guān)的二項式展開式,首先考慮的是兩個因式相乘,每個項都要相互乘一次,這樣就可以分解成乘以常數(shù)和乘以一次項兩種情況,最后將兩種情況球出來的系數(shù)求和.如要求次方的系數(shù),計算方法就是,也就是說,有兩個是取的,剩下一個就是的.10、B【解析】解不等式,可得,即,故“”是“”的一個必要不充分條件,故選B.11、C【解析】分析:已知,解出a,b的值,再根據(jù)充分條件和必要條件的定義進行求解.詳解:a>0,b>0且a≠1,若logab>0,a>1,b>1或0<a<1,0<b<1,∴(a-1)(b-1)>0;若(a-1)(b-1)>0,則或則a>1,b>1或0<a<1,0<b<1,∴l(xiāng)ogab>0,∴“l(fā)ogab>0”是“(a-1)(b-1)>0”的充分必要條件.故選C.點睛:在判斷充分、必要條件時需要注意:(1)確定條件是什么、結(jié)論是什么;(2)嘗試從條件推導結(jié)論,從結(jié)論推導條件;(3)確定條件是結(jié)論的什么條件.抓住“以小推大”的技巧,即小范圍推得大范圍,即可解決充分必要性的問題.12、D【解析】分析:根據(jù)甲隊比乙隊平均每場進球個數(shù)多,得到甲對的技術(shù)比乙隊好判斷①;根據(jù)兩個隊的標準差比較,可判斷甲隊不如乙隊穩(wěn)定;由平均數(shù)與標準差進一步可知乙隊幾乎每場都進球,甲隊的表現(xiàn)時好時壞.詳解:因為甲隊每場進球數(shù)為,乙隊平均每場進球數(shù)為,甲隊平均數(shù)大于乙隊較多,所以甲隊技術(shù)比乙隊好,所以①正確;因為甲隊全年比賽進球個數(shù)的標準差為,乙隊全年進球數(shù)的標準差為,乙隊的標準差小于甲隊,所以乙隊比甲隊穩(wěn)定,所以②正確;因為乙隊的標準差為,說明每次進球數(shù)接近平均值,乙隊幾乎每場都進球,甲隊標準差為,說明甲隊表現(xiàn)時好時壞,所以③④正確,故選D.點睛:本題考查了數(shù)據(jù)的平均數(shù)、方差與標準差,其中數(shù)據(jù)的平均數(shù)反映了數(shù)據(jù)的平均水平,方差與標準差反映了數(shù)據(jù)的穩(wěn)定程度,一般從這兩個方面對數(shù)據(jù)作出相應的估計,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】

根據(jù)函數(shù)的奇偶性和周期性畫出函數(shù)圖像,由y=fx,y=lnx【詳解】由fx+8e=f(x)可知函數(shù)fx是周期為8e的周期函數(shù),而函數(shù)fx為偶函數(shù),函數(shù)圖像結(jié)合x∈0,4e時,f(x)=ex-2的圖像,可畫出x∈-4e,0上的圖像,進而畫出函數(shù)fx的圖像.令gx=0,則fx=lnx,畫出y=fx,y=lnx兩個函數(shù)圖像如下圖所示,由圖可知,兩個函數(shù)有A,B,C,D四個公共點,故gx有4個零點.另,當x∈0,4e時,故答案為4本小題主要考查函數(shù)的奇偶性和周期性,考查函數(shù)零點問題的求解策略,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于中檔題.14、1【解析】分析:根據(jù)題意,由向量坐標計算公式可得1﹣的坐標,由向量垂直與向量數(shù)量積的關(guān)系可得(1﹣)?=﹣3+x1=0,解可得x的值,進而由向量模的計算公式計算可得答案.詳解:根據(jù)題意,向量=(1,x),=(﹣1,x),則1﹣=(3,x),若1﹣與垂直,則(1﹣)?=﹣3+x1=0,解可得:x=±,則||==1,故答案為1.點睛:本題考查向量數(shù)量積的坐標計算,關(guān)鍵是求出x的值.15、.【解析】分析:觀察下列式子,右邊分母組成以為首項,為公差的對稱數(shù)列,分子組成以為首項,以為公差的等差數(shù)列,即可得到答案.詳解:由題意,,,,可得,所以.點睛:本題主要考查了歸納推理的應用,其中歸納推理的步驟是:(1)通過觀察給定的式子,發(fā)現(xiàn)其運算的相同性或運算規(guī)律,(2)從已知的相同性或運算規(guī)律中推出一個明企鵝的一般性的題,著重考查了考生的推理與論證能力.16、【解析】

先根據(jù)公式,,求出點的直角坐標,根據(jù)題意得出直線的斜率為0,用點斜式表示出方程,再化為極坐標方程.【詳解】由,,可得點的直角坐標為∵直線與極軸平行

∴在直角坐標系下直線的斜率為0

∴直線直角坐標方程為y=1

∴直線的極坐標方程是

故答案為.本題考查了簡單曲線的極坐標方程,解答的關(guān)鍵是利用基本公式,,注意轉(zhuǎn)化思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】

解:依題意,這4個人中,每個人去參加甲游戲的概率為,去參加乙游戲的概率為.設(shè)“這4個人中恰有i人去參加甲游戲”為事件(i=0,1,2,3,4),則(Ⅰ)這4個人中恰有2人去參加甲游戲的概率(Ⅱ)設(shè)“這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)”為事件B,則,由于與互斥,故所以,這4個人去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率為(Ⅲ)ξ的所有可能取值為0,2,4.由于與互斥,與互斥,故,.所以ξ的分布列是ξ

0

2

4

P

隨機變量ξ的數(shù)學期望考點:1.離散型隨機變量的期望與方差;2.相互獨立事件的概率乘法公式;3.離散型隨機變量及其分布列.18、(1);(2).【解析】分析:(1)由題意得到關(guān)于a,b的方程組,求解方程組可知;(2)由(1)得,據(jù)此可得切線方程為.詳解:(1),依題意得,即,解得,經(jīng)檢驗,符合題意.(2)由(1)得,∴.,,∴曲線在處的切線方程為,即.點睛:導數(shù)運算及切線的理解應注意的問題一是利用公式求導時要特別注意除法公式中分子的符號,防止與乘法公式混淆.二是直線與曲線公共點的個數(shù)不是切線的本質(zhì),直線與曲線只有一個公共點,直線不一定是曲線的切線,同樣,直線是曲線的切線,則直線與曲線可能有兩個或兩個以上的公共點.三是復合函數(shù)求導的關(guān)鍵是分清函數(shù)的結(jié)構(gòu)形式.由外向內(nèi)逐層求導,其導數(shù)為兩層導數(shù)之積.19、(1);(2)【解析】

(1)當,可得直線的參數(shù)方程為,消掉參數(shù),即可求得直線的普通方程,由的參數(shù)方程為,可得,根據(jù)即可求得答案;(2)將直線的參數(shù)方程,代入圓的方程得,根據(jù)韋達定理和直線參數(shù)的幾何意義,即可求得答案;【詳解】(1)直線的參數(shù)方程為,消掉參數(shù)可得直線的普通方程為,的參數(shù)方程為(為參數(shù))可得曲線的普通方程為.(2)將直線的參數(shù)方程為(為參數(shù))代入圓的方程得,易知,設(shè)所對應的參數(shù)分別為,則,,所以,當時,的最小值為.本題考查了參數(shù)方程化為直角坐標方程和利用直線參數(shù)方程幾何意義求弦長問題,解題關(guān)鍵是掌握根據(jù)直線的參數(shù)方程求弦長問題時,一般與韋達定理相結(jié)合,考查了分析能力和計算能力,屬于中檔題.20、(1)1.(2)[-,0).【解析】分析:第一問首先根據(jù)題中所給的函數(shù)解析式,將相應的變量代入可得結(jié)果,之后應用絕對值不等式的性質(zhì)得到其差值不超過,這就得到|m|≤1,解出范圍從而求得其最大值,第二問解題的方向就是向最小值靠攏,應用最小值小于零,從而求得參數(shù)所滿足的條件,求得結(jié)果.詳解:(Ⅰ)∵f(x)=|x-a|+,∴f(x+m)=|x+m-a|+,∴f(x)-f(x+m)=|x-a|-|x+m-a|≤|m|,∴|m|≤1,∴-1≤m≤1,∴實數(shù)m的最大值為1;(Ⅱ)當a<時,g(x)=f(x)+|2x-1|=|x-a|+|2x-1|+=∴g(x)min=g()=-a+=≤0,∴或,∴-≤a≤0,∴實數(shù)a的取值范圍是[-,0).點睛:該題考查的是有關(guān)不等式的綜合題,在解題的過程中,需要明確絕對值不等式的性質(zhì),從而求得參數(shù)所滿足的條件,從而求得結(jié)果,第二問就要抓

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論