版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廣東大學(xué)考研數(shù)學(xué)試卷一、選擇題(每題1分,共10分)
1.設(shè)函數(shù)\(f(x)=2x^3-3x^2+x+1\),則\(f(x)\)的導(dǎo)數(shù)\(f'(x)\)為:
A.\(6x^2-6x+1\)
B.\(6x^2-6x+1\)
C.\(6x^2-6x+1\)
D.\(6x^2-6x+1\)
2.設(shè)\(A=\begin{bmatrix}1&2\\3&4\end{bmatrix}\),則矩陣\(A\)的行列式\(\det(A)\)為:
A.-2
B.2
C.0
D.4
3.下列哪個(gè)函數(shù)在\(x=0\)處連續(xù):
A.\(f(x)=\frac{1}{x}\)
B.\(f(x)=|x|\)
C.\(f(x)=x^2\)
D.\(f(x)=\sqrt{x}\)
4.若\(\lim_{x\to2}(x^2-3x+2)=1\),則\(\lim_{x\to2}(2x-3)\)為:
A.1
B.3
C.5
D.無法確定
5.設(shè)\(\lim_{x\to0}\frac{\sin(x)}{x}\)等于:
A.0
B.1
C.無窮大
D.不存在
6.若\(a,b\)是實(shí)數(shù),且\(a^2+b^2=1\),則\(ab\)的取值范圍是:
A.\([-1,1]\)
B.\([-1,0]\)
C.\([0,1]\)
D.\([0,\infty)\)
7.設(shè)\(A=\begin{bmatrix}1&2\\3&4\end{bmatrix}\),則\(A\)的逆矩陣\(A^{-1}\)為:
A.\(\begin{bmatrix}4&-2\\-3&1\end{bmatrix}\)
B.\(\begin{bmatrix}4&-2\\-3&1\end{bmatrix}\)
C.\(\begin{bmatrix}1&2\\3&4\end{bmatrix}\)
D.\(\begin{bmatrix}1&2\\3&4\end{bmatrix}\)
8.設(shè)\(f(x)=e^x\),則\(f(x)\)的反函數(shù)\(f^{-1}(x)\)為:
A.\(\ln(x)\)
B.\(x\)
C.\(e^x\)
D.\(x+1\)
9.下列哪個(gè)函數(shù)是奇函數(shù):
A.\(f(x)=x^2\)
B.\(f(x)=|x|\)
C.\(f(x)=\sin(x)\)
D.\(f(x)=e^x\)
10.設(shè)\(\lim_{x\to\infty}\frac{x^2-1}{x+1}\)等于:
A.0
B.1
C.無窮大
D.不存在
二、多項(xiàng)選擇題(每題4分,共20分)
1.下列哪些是線性方程組的解法:
A.高斯消元法
B.代入法
C.完全平方法
D.消元法
2.下列哪些是實(shí)數(shù)域上的線性空間:
A.\(\mathbb{R}^n\)
B.\(\mathbb{C}^n\)
C.\(\mathbb{R}^2\)上的所有函數(shù)
D.\(\mathbb{R}^2\)上的所有多項(xiàng)式
3.下列哪些函數(shù)在\(\mathbb{R}\)上是連續(xù)的:
A.\(f(x)=x^2\)
B.\(f(x)=|x|\)
C.\(f(x)=\frac{1}{x}\)
D.\(f(x)=e^x\)
4.下列哪些是矩陣的秩的性質(zhì):
A.矩陣的秩不大于其行數(shù)
B.矩陣的秩不大于其列數(shù)
C.矩陣的秩等于其行數(shù)和列數(shù)
D.矩陣的秩等于其非零行數(shù)
5.下列哪些是微積分的基本定理:
A.微分和積分是互逆的運(yùn)算
B.定積分可以表示為函數(shù)的原函數(shù)的不定積分
C.變限積分可以通過微積分基本定理求解
D.微分和積分的運(yùn)算可以交換順序
三、填空題(每題4分,共20分)
1.若函數(shù)\(f(x)=3x^2-4x+5\)的導(dǎo)數(shù)\(f'(x)\)為常數(shù),則該常數(shù)為________。
2.矩陣\(A=\begin{bmatrix}1&2\\3&4\end{bmatrix}\)的行列式\(\det(A)\)等于________。
3.若\(\lim_{x\to0}\frac{\sin(x)}{x}=1\),則\(\lim_{x\to0}\frac{\cos(x)-1}{x^2}\)等于________。
4.二次函數(shù)\(f(x)=ax^2+bx+c\)的頂點(diǎn)坐標(biāo)為________。
5.若矩陣\(A\)的逆矩陣\(A^{-1}\)存在,則\(A\cdotA^{-1}=\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\
四、計(jì)算題(每題10分,共50分)
1.計(jì)算下列極限:
\[\lim_{x\to0}\frac{\sin(3x)-\sin(2x)}{x}\]
2.求函數(shù)\(f(x)=x^3-6x^2+9x-1\)的導(dǎo)數(shù),并求\(f'(x)\)在\(x=2\)處的值。
3.解線性方程組:
\[\begin{cases}
2x+3y-z=8\\
x-y+2z=-1\\
3x+2y-4z=0
\end{cases}\]
4.計(jì)算矩陣\(A=\begin{bmatrix}1&2&3\\4&5&6\\7&8&9\end{bmatrix}\)的行列式\(\det(A)\),并判斷矩陣\(A\)是否可逆。
5.求不定積分\(\int(2x^3-3x^2+4x-1)\,dx\)。
6.已知函數(shù)\(f(x)=e^{2x}\sin(x)\),求\(f(x)\)的二階導(dǎo)數(shù)\(f''(x)\)。
本專業(yè)課理論基礎(chǔ)試卷答案及知識點(diǎn)總結(jié)如下:
一、選擇題答案及知識點(diǎn)詳解:
1.A.\(f'(x)=6x^2-6x+1\)(知識點(diǎn):函數(shù)的導(dǎo)數(shù)計(jì)算)
2.B.\(\det(A)=2\)(知識點(diǎn):矩陣的行列式計(jì)算)
3.C.\(f(x)=x^2\)(知識點(diǎn):函數(shù)的連續(xù)性)
4.C.\(\lim_{x\to2}(2x-3)=1\)(知識點(diǎn):極限的計(jì)算)
5.B.\(\lim_{x\to0}\frac{\sin(x)}{x}=1\)(知識點(diǎn):極限的計(jì)算)
6.A.\([-1,1]\)(知識點(diǎn):實(shí)數(shù)域上的線性空間)
7.A.\(A^{-1}=\begin{bmatrix}4&-2\\-3&1\end{bmatrix}\)(知識點(diǎn):矩陣的逆矩陣)
8.A.\(f^{-1}(x)=\ln(x)\)(知識點(diǎn):函數(shù)的反函數(shù))
9.C.\(f(x)=\sin(x)\)(知識點(diǎn):奇函數(shù)的定義)
10.B.\(\l
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 東莞市2024上半年廣東東莞市望牛墩鎮(zhèn)招聘鎮(zhèn)政府材料員(特色人才聘員)1人筆試歷年參考題庫典型考點(diǎn)附帶答案詳解(3卷合一)
- 網(wǎng)絡(luò)工程師認(rèn)證考試題庫及答案
- 網(wǎng)易游戲測試工程師面試題庫
- 稅務(wù)師職業(yè)資格考試要點(diǎn)與模擬題
- 機(jī)場地勤人員面試問題及答案參考
- 2025年家庭農(nóng)場智能管理系統(tǒng)項(xiàng)目可行性研究報(bào)告
- 2025年水資源再利用項(xiàng)目可行性研究報(bào)告
- 2025年建筑機(jī)器人研發(fā)項(xiàng)目可行性研究報(bào)告
- 2025年未來城市設(shè)計(jì)理念項(xiàng)目可行性研究報(bào)告
- 2025年兒童早期教育服務(wù)平臺研發(fā)可行性研究報(bào)告
- 濕疹患者護(hù)理查房
- 2025至2030中國融媒體行業(yè)市場深度分析及前景趨勢與投資報(bào)告
- 2026年江蘇農(nóng)牧科技職業(yè)學(xué)院單招職業(yè)技能測試模擬測試卷附答案
- 2026年南京交通職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性測試題庫附答案
- 2025吐魯番市高昌區(qū)招聘第二批警務(wù)輔助人員(165人)筆試考試參考試題及答案解析
- 江蘇省徐州市2026屆九年級上學(xué)期期末模擬數(shù)學(xué)試卷
- 癲癇常見癥狀及護(hù)理培訓(xùn)課程
- 2025年南陽市公安機(jī)關(guān)招聘看護(hù)隊(duì)員200名筆試考試參考試題及答案解析
- 產(chǎn)后康復(fù)健康促進(jìn)干預(yù)方案
- 2024年人民法院聘用書記員考試試題及答案
- 2025年高三英語口語模擬(附答案)
評論
0/150
提交評論