版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
STUDY
AIASGAMECHANGER
TheNewDrivingForceoftheAutomotiveIndustry
person
Authors&Contact
Lead
AugustinFriedel
SoftwareDefinedVehicles
Augustin.Friedel@
Lead
MatthiasBorch
ArtificialIntelligence
Matthias.Borch@
ContactPerson
StephanBaier
ArtificialIntelligence
Stephan.Baier@
Author
MarcusWilland
Mobility
Marcus.Willand@
Author
Dr.NilsSchaupensteiner
TransformationAdvisory
Nils.Schaupensteiner@
Author
PatrickRuhland
TransformationAdvisory
Patrick.Ruhland@
AIasGameChanger
Thestudy“AIasGameChanger“anditssummarywerepublishedby:
MHPGesellschaftfürManagement-undIT-BeratungmbH
Allrightsreserved!
Noreproduction,microfilming,storage,orprocessinginelectronicmediapermittedwithouttheconsentofthepublisher.Thecontentsofthispublicationareintendedtoinformourcustomersandbusinesspartners.Theycorrespondtothestateofknowledgeoftheauthorsatthetimeofpublication.Toresolveanyissues,pleaserefertothesourceslistedinthepublicationorcontactthedesignatedcontactpersons.Opinionarticlesreflecttheviewsoftheindividualauthors.Roundingdifferencesmayoccurinthegraphics.
3
4
Contents
Contents4
Tableoffigures6
12KeyFindings8
WelcometoChange!10
01.RevolutionandAutomotiveMarketPotential11
02.InvestmentinCompaniesWithanAIFocus15
03.PilotProjectsandImplementation19
04.AIModels,Levels,andUseCases23
4.1TheGameChanger:WhatCanBeAchievedWithAI26
4.2AutomobileManufacturersWithLowAIInvestment29
4.3AIModels:MakeorBuy?29
05.AIApplicationsAlongtheAutomotiveValueChain31
5.1AIOperationinVehiclesandintheCloud35
5.2AIMonetizationinVehicles39
5.3AddedValueofAIApplicationsinCompanies40
06.WhattheCustomerWants:TheUserPerspective47
6.1UseandUnderstandingofAIApplications49
6.2AdvantagesandDisadvantages–GenerallyandinVehicles49
6.3PurchasingDecision,TrustandWillingness
toPay51
AIasGameChanger|Contents
07.SuccessFactorsandStrategicApproach55
7.1StrategyandGoalPlanning56
7.2ThinkfromthePerspectiveoftheCustomer,nottheTechnology56
7.3OrganizationalAnchoringandOwnership58
7.4LocalDifferencesrequirelocalSetup59
7.5ReducingComplexity59
7.6Useand
MonetizationofData60
7.7ChecklistforsuccessfulImplementation61
08.Challenges,Responsibility,andRisks63
8.1CostsofTraining
andOperation64
8.2Dataand
DigitalizationasaBasis65
8.3BusinessModelsandCasesforB2CandB2B65
8.4EthicsandResponsibility67
8.5NewRisksandRegulatoryChallenges69
09.AIApplicationsintheAutomotiveIndustry:7RecommendationsforAction71
10.FurtherInformations75
LiteratureandSources76
Contact
International78
About
MHP79
5
6
Tableoffigures
Figure1:Technologysupercycles–artificialintelligenceasthenextrelevantplatformshift
(Coatue,2024)12
Figure2:AImarketsizeintheautomotivesector(PrecedenceResearch,2024)12
Figure3:TotalinvestmentsinAIcompaniesfoundedsince2001,inUSDbillion(Scheuer,2024)16
Figure4:InvestmentinAIstacklayers(Coatue,2024)17
Figure5:CompanieswithteamandbudgetforAI(Capgemini,2023)21
Figure6:InterconnectedAIconcepts24
Figure7:VisualizationofAIasapyramid25
Figure8:ClassificationofAIterms27
Figure9:TheperformanceofAImodelscomparedtohumancapabilitiesintheMMLUtest(iAsk,2024)28
Figure10:SchematicdiagramofthetrainingofAIfoundationmodelsforvehicles30
Figure11:UseofAIalongthevaluechain32
Figure12:SignificantimprovementsoffunctionsandfeaturesthroughAI33
Figure13:InterestinAIfunctionscomparedinternationally34
Figure14:Roleofon-premise,cloud,andvehicleforAImodels35
Figure15:Levelsofasoftware-definedvehicle(SDV)(Willand,Friedel,&Schaupensteiner,2023)36
Figure16:DifferentmodelsforADASandADapplicationsandfunctions37
Figure17:AI’spotentialatdifferentstagesofthevaluechain
(Capgemini,2023)40
Figure18:UseofAI-basedsolutionsbyregion41
Figure19:KeydriversbehindtheuseofAIinproduction42
7
AIasGameChanger|Tableoffigures
Figure20:Decisiveissue–fewerusersofsoftwareduetoAIorfreesoftware(Coatue,2024)43
Figure21:PossibleusesofAIinsoftwaredevelopment
(Wee2024)44
Figure22:UnderstandingofAIincars48
Figure23:AdvantagesofusingAIincars49
Figure
24:TheperceivedadvantagesanddisadvantagesofusingAI50
Figure
25:AIincars:purchasemotivationorblocker?51
Figure26:TrustinstakeholderswithregardtotheimplementationofAIinvehicles52
Figure27:WillingnesstopayforAIfunctions52
Abb.28:AssessmentofthefutureAIcompetenceofcarmanufacturersbyregion53
Figure
29:Customerandusecasefirst,andthenAIapplicationsandmodels57
Figure30:Dimensionsforvalidatingtechnicalfeasibility57
Figure31:TrainingcostsforAImodelsareincreasing(StanfordUniversity,2024)64
Figure32:Dataavailabilityandqualitybyregion65
Figure33:Customers’willingnesstopayisunclear;costsariseforimplementationandoperation66
Figure
34:ClassificationofAIusecasecategoriesandpossiblebusinessmodels67
Figure35:RisksassociatedwiththeuseofAI68
Figure
36:PrinciplesandpenaltiesoftheEUAIAct70
Table1:ThedevelopmentofAImodelsdividedintodifferenttimephases27
12KeyFindings
ThewidespreaduseofAIispredictedtobethenextrelevantplatformshiftaftercloudtransformation–originalequipmentmanufacturers(OEMs)needtostepuptheiractivities.
Morethan
50
ofrespondentsseetime-savingasthebiggestbenefitofAIapplications.
SkepticismaboutAI
applicationsisgreaterin
theUSthaninEurope
orChina.
Only
ofrespondentsinChinastatethattherisksofAI
outweighthebenefits;thisfigureisaround25percentinEuropeandtheUS.
Themostfrequentlymentioneddisadvantagesof
AIarefearoflossofcontrol,lossofdataprotectionandpersonalprivacy,andsecurityrisks.
8
CustomersworldwidewanttouseAIincars,butrarelypayforit.
InChina,morethantwiceasmanycustomershavealreadyusedAIintheircarsasin
Europe.
KI
InChina,AIfunctionsmostlyhaveapositive
influenceoncarpurchasing
decisions–only
ofrespondents
wouldnotbuy
avehiclebasedonAIfunctions.
Today,Chinesecar
manufacturersareregardedasleadersinAIinnovation.Infiveyears’time,JapaneseOEMswillbeattheforefront,followedbyChineseandGermanOEMs.
AIisnotonlyrevolutionizingthein-vehiclecustomerexperience
–theentirevaluechainis
experiencingdisruptivechange.
TraditionalcarmanufacturersarethemosttrustedwhenitcomestotheuseofAI,far
aheadofstateinstitutionsandnewcarmanufacturers.
SuccessfulimplementationofAIapplicationsisnotpossiblewithoutpriordigitalizationandaccesstospecificdatasources.
AIasGameChanger|12KeyFindings
9
10
WelcometoChange!
Dearreaders,
Artificialintelligencewillbethenextplatformshiftthatrevolutionizesallindustrialsectors.StakeholdersintheautomotivevaluechainhaverealizedthatAIischallengingmanytradi-tionalprocessesandwaysofthinking.TheintroductionofthePC,thestationaryInternetandthenthemobileInternet,andCloud/SaaSpreviouslyhadasimilarlydisruptiveimpact.Newbusinessmodelsandprofitpoolsareemerging,whileatthesametimetherearenu-merouschallengestobetackledwithregardtotechnology,partnerships,andethicalissues.Inthisstudy,wetracethegroundbreakingdevelopmentsinAIsofarandexaminetheop-portunitiesandriskswithintheautomotiveindustry.Accompanyusthroughpresentandfuturescenarios–withspecificrecommendationsforactionforyourownstrategywhenitcomestoimplementingAIapplicationsinproductionandinvehicles.
Whetherthenewtechnologiesmeettheexpectationsofdriversisdeterminedrightthereinthecockpit.That’swhy,inChapter8,weoutlinetheuserperspectivebasedonourowncurrentdata.OurinternationalsurveyprovidesinformationaboutwhichproductsandservicesfromautomotivecompaniescouldfulfillAIneedsandwhatthewillingnesstopaylookslike.Thatmakesthisstudyessentialreadingfordecision-makers,CIOs,andapplica-tiondevelopers.
InvestorsinAItechnologiesandAIteamsneedaconsistent,long-termcost-benefitratio.Wethereforeexaminethedirect/indirectmonetizationofin-carAIandlookatnewbusinessmodelsbasedonAIanddigitalization.
Ultimately,asissooftenthecase,itbecomesclearthatthejourneyintonewtechnologicalterritoryisbestundertakenwithexperiencedtravelguides.Gettheknow-howyouneed–andalwaysbecurious!
ENABLINGYOUTOSHAPEABETTERTOMORROW
Bestregards,
Dr.JanWehinger
ClusterLeadSoftwareDefinedVehicles
MHPManagement-undIT-BeratungGmbHLudwigsburg,September2024
AIasGameChanger|01.RevolutionandAutomotiveMarketPotential
01.
Revolutionand
AutomotiveMarketPotential
11
EveryonerecognizesthatAIisthenextplatformshift
Mobile Internet(Web2.0)
Cloud/SaaS
GenerativeAI
Desktop Internet(Web1.0)
Networking
PC
Mainframe
1960–19801980s1990s2000s2010s2015–20202022–...
Figure1:Technologysupercycles–artificialintelligenceasthenextrelevantplatformshift(Coatue,2024)
AI-Basedsystemsforautomotiveindustrytoreach
US$35.7billionby2033
35.7
26.6
20.015.2
...inbillionUS$
11.79.2
3.23.94.75.87.3
20232024202520262027202820292030203120322033
Figure2:AImarketsizeintheautomotivesector(PrecedenceResearch,2024)
12
ItishighlylikelythatthebigtechnologycompaniessuchasGoogle,Meta,andMicrosoft–whichgainedinimportancewiththelastplatformshifts(supercy-cles)–willalsodominatetheAIage.
Alongtheautomotivevaluechain,stakeholdersaresometimesaccusedofhavingrespondedtothelastplatformshiftstoolateorwithanineffectivestrategy.Inouropinion,therelevanceofconnectivityandcloudsolutionswasrecognizedtoolateandimplementationcouldhavebeenbetter.Theindustryisatthebegin-ningoftheAIplatformshiftandthereisstilltheop-portunitytorespondearlywithatargetedstrategy.CompanieslikeApplehaveshownthatitisnotneces-
Onefear,however,isthatartificialintelligencewillincreasinglyreplacepeopleandjobsmaydisappear.Currently,AIapplicationsareregardedmoreasacom-plementratherthanareplacement.AcademicssuchasKarimLakhanifromHarvardBusinessSchoolbelievethatAIwillnotreplacehumans.OnepossiblescenarioisthatpeoplewhouseAIwillhaveasignificantadvan-tageoverworkerswhodonotuseit.
RegardingthequestionofwhetherAIwillimprovetheeconomy,asurveyshowsamixedpicture.Worldwide,34percentofrespondentsbelievethattheuseofAIwillimprovetheeconomicsituationintheircountryinthenextthreetofiveyears.Thishopeisaboveaverage
“AIWon’tReplaceHumans—
ButHumansWithAIWillReplaceHumansWithoutAI.”(HBR,2023)
sarytobethefirstinnovator.WithastrongAIstrategy,acompanycanalsoexploitpotentialasafastfollower.Themarketforartificialintelligenceintheautomotiveindustryhasshownremarkablegrowthinrecentyears.ItiscurrentlyestimatedtobearoundUSD3.9billionin2024andisexpectedtogrowtoUSD15billionby
2030.SomemarketanalysesanticipatethatAIsalesintheautomotivesectorwillrisetooverUSD35billionin2033.Growthfrom2024to2033correspondstoarateof28percent.
Estimatesinothermarketreportsmaybeslightlyhigh-erorlower,butallshowthesametrend.Thismeansthatextensiveeconomicopportunitiesarebeingcreat-edalongthevaluechainformanufacturers,suppliers,andserviceproviders.
incountriessuchasThailand,India,andSouthAfrica.Atthelowerendoftherankingarecountriesinclud-ingBelgium,Japan,theUS,andFrance(Ipsos,2023).Overall,thereareincreasingsignsthattherearefarmoreopportunitiesthanrisks.Thetargeteduseofarti-ficialintelligencewillsignificantlyaffectourprosperityinthecomingdecades.AIboostsefficiencyandcancounterthenegativeeffectsofskillsshortages,demo-graphicchanges,andhighlocationcosts.Itisnowuptotheautomotiveindustrytotakeboldandappropri-atelyfastaction–andfollowastrategicallyintelligentapproach.
AIasGameChanger|01RevolutionandAutomotiveMarketPotential
13
AIasGameChanger|02.InvestmentinCompaniesWithanAIFocus
02.
Investmentin
CompaniesWithanAIFocus
15
16
Magnetforinvestment:TotalinvestmentinAIcompaniesfoundedsince2001inbillionsofUSdollars
16.5bn.US$GreatBritain
4.6bn.US$WashingtonDC
5.0bn.US$Germany
29.2bn.US$NewYork
6.1
bn.US$
France
16.6bn.US$Boston
★★
★★
★★
★★
★★★
39.6
BnUS$
8.4bn.
US$
Dallas
Diego
5.3bn.US$San
101.2
bnUS$
234.1
10.2bn.US$LosAngeles
BnUS$
55.8bn.US$SanFrancisco
7bn.US$Seattle
41.7
bnUS$SiliconValley
Figure3:TotalinvestmentsinAIcompaniesfoundedsince2001,inUSDbillion(Scheuer,2024)
AlookatthedistributionofAIinvestmentshowsthedominanceofthoseregionsthatalsodominatedthemarketinthelastplatformshifts(seeCoatue,2024;Figure1).Itcanbeassumedthattheautomotivein-dustrywillcontinuetobedependentonhyperscalersandtechnologycompanies.Collaborationsregardingsoftware,cloudapplications,andtheuseofAIareex-pectedtoincrease.
AnanalysisshowsthatalargeshareoftheinvestmentinAIcompaniescomesfromtheUS.Acloserlook(Coatue,2024)showsthatonlyapprox.3percentoftheventurecapitaldealshaveaclearlinktoAI,butthat15percentoftheinvestedcapitalflowsintoAIstart-ups.Fromthisimbalance,itcanbeconcluded
thatthemarketseesrelativelyhighvaluationsandcorrespondinglyhighinvestmentrounds.Thefinanc-ingroundsshowthatmostoftheinvestmentsin2024wentintocompaniesthatdevelopAImodelssuchasChatGPT,Mistral,andClaude.AtotalofUSD14bil-lionwasinvestedinAImodelsinthefirsthalfoftheyear.Thisequatesto62percent.
In2024,asmallerproportionofthecapitalinvestedinAIcompanieswentintofirmsthatdevelopsemicon-ductorsforAIapplications.Roboticsapplications,suchashumanoidrobots,garneredapprox.USD2billionincapital,whichcorrespondstoaround9percentofthetotal.
17
AmongthelargestinvestorsintheAIfieldarethemajortechnologycompaniesincludingMicrosoft,Amazon,NVIDIA,andAlphabet(Google’sholdingcompany).In2023,thesecompaniesinvestedaroundUSD25billionandwerethusresponsiblefor8percentofinvestment.
Carmanufacturers’investmentsincompaniesthatdealwithartificialintelligencearemoremodest.Belowaresomeexamples:
InvestmentsbyNIOCapital
Momenta:Start-upwithafocusonautonomousdriv-ingandonthedevelopmentoftechnologiesforenvi-ronmentalperceptionandhigh-precisionmapping
Pony.ai:Companyfocusingonautonomousdriving;itformspartnershipstodevelopmobilitysolutions
BlackSesameTechnologies:CompanyspecializinginAIchipsandsystems
InvestmentsbyBMWiVentures
Alitheon:SpecializesinopticalAItechnologyforob-jectidentificationandauthenticationwithFeaturePrinttechnology
Recogni:Focusesonhigh-performanceAIprocessingwithlowpowerconsumptionforautonomousvehicles
AutoBrains:DevelopsAIsolutionsfortheautomotiveindustry,particularlyinthefieldofautonomousdriv-ingtechnologies
InvestmentsbyPorsche
Sensigo:DeveloperofanAI-supportedplatformforoptimizingvehiclediagnosticsandrepairprocesses
Waabi:CanadiandeveloperofAI-basedsolutionsforself-drivingtrucks
AppliedIntuition:Providessoftwaresolutionsforthedevelopmentofdriverassistancesystemsandauton-omousdriving
Cresta:Specializesinreal-timeintelligenceforcustom-erinteractionsandcommunicationsolutions
WhereareAIVCdollarsgoing?
Funding~$14B
100
80
60
40
20
0
62%
AIModels
~$4B
20%
AIApps
~$2B
9%
AIOps/AICloud
~$2B
9%
AIRobotics
~$100M
<1%
AISemis
AIasGameChanger|02InvestmentinCompaniesWithanAIFocus
Figure4:InvestmentinAIstacklayers(Coatue,2024)
AIasGameChanger|03.PilotProjectsandImplementation
03.
PilotProjectsandImplementation
19
20
Without
comprehensivepriordigitalization,the
implementationof
AIapplicationswill
beaninsurmountablechallenge.Car
manufacturersandsuppliersshould
allocatebudgetsforAIandbuildup
expertisepromptly.
21
Intheautomotiveindustry,amixedpictureisemergingwithregardtotheacceptanceandimplementationofAIapplicationsalongthevaluechain.Thelevelofim-plementationislowamongsuppliersanddealersandinafter-salesservices.Automobilemanufacturershavemadefurtherprogressintermsofimplementation,butthereissignificantpotentialforimprovementhere.
Lookingattheautomotiveindustryasawhole,only4percentofcompanieshavebeguntoimplementAIapplicationsatselectedlocations.Thatisaroundhalfasmuchasinthepharmaceuticalindustry.Inretail,thefigureisfourtimeshigher.Some28percentofcompaniesintheautomotivevaluechainareworkingonAIpilotprojects,andthevastmajority(68percent)arestillatexplorationstage(CapgeminiResearchIn-stitute,2023).
Only30percentofthecompaniesintheautomotivesectorhaveadedicatedteamandanextrabudgetfortheintroductionandimplementationofAIprojects.Bycomparison,therateis62percentinretail,74percentinthehigh-techsector,and52percentinaerospace/defense.(Capgemini,2023)
Interimconclusion:Theautomotiveindustry’sinvest-mentinAIhasbeenbelowaveragetodate;thisaffectsbudgetsandspecializedteams.GiventhehugeimpactofAIontheindustry,itisadvisabletorectifythissitua-tionquickly.
ProportionofcompanieswithadedicatedteamandbudgetforAI
A
e
g
a
r
62%
ve
52%
36%
30%
40%
74%
CarHighTech
manufacturing
RetailAerospace/
defense
Tele-
communi-
cations
AIasGameChanger|03PilotProjectsandImplementation
Figure5:CompanieswithteamandbudgetforAI(Capgemini,2023)
AIasGameChanger|04.AIModels,Levels,andUseCases
04.
AIModels,Levels,andUseCases
23
24
InterconnectedAIconcepts
Eachconceptisaspecializedpart
oftheoneprecedingit.
Figure6:InterconnectedAIconcepts
AIcoversawidefieldthatcanbedividedintoseveralareasandtermsusingahierarchicaldiagram:
ArtificialIntelligence(AI):Researchareafocusingonthecreationofintelligentmachines.
Machinelearning(ML):BranchofAIfocusingonthedevelopmentofmachinesthatcanlearnfromdata.
Deeplearning:Asub-categoryofmachinelearn-ingbasedonartificialneuralnetworks.Examplesareconvolutionalneuralnetworks(CNNs)andrecurrentneuralnetworks(RNNs).
GenerativeAI:Aspecialtypeofartificialneuralnet-worksthatgeneratedatasimilartothetrainingdata.Examplesaregenerativeadversarialnetworks(GANs)andlargelanguagemodels(LLMs).
WithAIapplications,variouscategoriesofusecasescanbeimplemented:
Datamanagement:Thisinvolvesharmonizingdataandobtainingfindings.Itisessentialfortheefficientuseofinformation.
Patternrecogni
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學(xué)醫(yī)學(xué)美容技術(shù)(美容技術(shù)研究)試題及答案
- 2025年大學(xué)護(hù)理學(xué)(中醫(yī)護(hù)理基礎(chǔ))試題及答案
- 2026年熱水器清洗(水垢去除)試題及答案
- 2025年注冊會計(jì)師(CPA)考試 會計(jì)科目深度沖刺試卷與答案解析
- 醫(yī)患關(guān)系溫暖文案集
- 人工智能:典型應(yīng)用實(shí)例
- 神奇的埃及科普講解
- 祛斑知識培訓(xùn)課件
- 天津理工大學(xué)就業(yè)指南
- 人工智能市場波動(dòng)分析
- 2025年軍工涉密裝備銷毀技術(shù)考試備考指南
- 輸血科院感知識要點(diǎn)
- 第三方檢測機(jī)構(gòu)年終總結(jié)
- 道路應(yīng)急處理培訓(xùn)
- DB4403-T 364-2023 智能網(wǎng)聯(lián)汽車V2x車載信息交互系統(tǒng)技術(shù)要求
- 四川省工傷課件
- 2024年衛(wèi)生高級職稱面審答辯(呼吸內(nèi)科)(副高面審)經(jīng)典試題及答案
- 民爆銷售企業(yè)安全培訓(xùn)課件
- 水利工程招標(biāo)投標(biāo)重點(diǎn)難點(diǎn)及措施
- 幼兒園流感培訓(xùn)知識課件
- 蘄春縣國土空間總體規(guī)劃(2021-2035)
評論
0/150
提交評論