版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.在中,,,下列結(jié)論中,正確的是()A. B.C. D.2.如圖,是的直徑,弦于,連接、,下列結(jié)論中不一定正確的是()A. B. C. D.3.下列幾何體中,主視圖是三角形的是()A. B. C. D.4.如圖,函數(shù),的圖像與平行于軸的直線分別相交于兩點,且點在點的右側(cè),點在軸上,且的面積為1,則()A. B.C. D.5.太陽與地球之間的平均距離約為150000000km,用科學(xué)記數(shù)法表示這一數(shù)據(jù)為()A.1.5×108km B.15×107km C.0.15×109km D.1.5×109km6.某反比例函數(shù)的圖象經(jīng)過點(-2,3),則此函數(shù)圖象也經(jīng)過()A.(2,-3) B.(-3,3) C.(2,3) D.(-4,6)7.反比例函數(shù)的圖象經(jīng)過點,若點在反比例函數(shù)的圖象上,則n等于()A.-4 B.-9 C.4 D.98.“鳳鳴”文學(xué)社在學(xué)校舉行的圖書共享儀式上互贈圖書,每個同學(xué)都把自己的圖書向本組其他成員贈送一本,某組共互贈了210本圖書,如果設(shè)該組共有x名同學(xué),那么依題意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=2109.已知⊙O的半徑為4,點P到圓心O的距離為4.5,則點P與⊙O的位置關(guān)系是()A.P在圓內(nèi) B.P在圓上 C.P在圓外 D.無法確定10.下列函數(shù)中屬于二次函數(shù)的是()A.y=x B.y=2x2-1 C.y= D.y=x2++1二、填空題(每小題3分,共24分)11.把二次函數(shù)變形為的形式,則__________.12.如圖,已知正六邊形內(nèi)接于,若正六邊形的邊長為2,則圖中涂色部分的面積為______.13.將一元二次方程變形為的形式為__________.14.一個圓錐的底面圓的半徑為3,母線長為9,則該圓錐的側(cè)面積為__________.15.如圖,一段拋物線:y=-x(x-2)(0≤x≤2)記為C1,它與x軸交于兩點O,A;將C1繞點A旋轉(zhuǎn)180°得到C2,交x軸于A1;將C2繞點A1旋轉(zhuǎn)180°得到C3,交x軸于點A2......如此進行下去,直至得到C2018,若點P(4035,m)在第2018段拋物線上,則m的值為________.16.若線段a、b滿足,則的值為_____.17.計算:cos45°=______.18.一個正多邊形的每個外角都等于,那么這個正多邊形的中心角為______.三、解答題(共66分)19.(10分)如圖,拋物線與直線交于A、B兩點.點A的橫坐標(biāo)為-3,點B在y軸上,點P是y軸左側(cè)拋物線上的一動點,橫坐標(biāo)為m,過點P作PC⊥x軸于C,交直線AB于D.(1)求拋物線的解析式;(2)當(dāng)m為何值時,;(3)是否存在點P,使△PAD是直角三角形,若存在,求出點P的坐標(biāo);若不存在,說明理由.20.(6分)已知y是x的反比例函數(shù),且當(dāng)時,.(1)求y關(guān)于x的函數(shù)解析式;(2)當(dāng)時,求y的值.21.(6分)我縣壽源壹號樓盤準(zhǔn)備以每平方米元均價對外銷售,由于國務(wù)院有關(guān)房地產(chǎn)的新政策出臺,購房者持幣觀望,房地產(chǎn)開發(fā)商為了加快資金周轉(zhuǎn),對價格進行兩次下調(diào)后,決定以每平方米元的均價開盤銷售.(1)求平均每次下調(diào)的百分率.(2)某人準(zhǔn)備以開盤均價購買一套平方米的住房,開發(fā)商給予以下兩種優(yōu)惠方案供選擇:①打折銷售;②不打折,一次性送裝修費每平方米元.試問哪種方案更優(yōu)惠?22.(8分)如圖,已知點在反比例函數(shù)的圖像上.(1)求a的值;(2)如果直線y=x+b也經(jīng)過點A,且與x軸交于點C,連接AO,求的面積.23.(8分)如圖,在平行四邊形中,對角線,相交于點為的中點,連接交于點,且.(1)求的長;(2)若,求.24.(8分)如圖,某倉儲中心有一斜坡AB,其坡比為i=1∶2,頂部A處的高AC為4m,B,C在同一水平面上.(1)求斜坡AB的水平寬度BC;(2)矩形DEFG為長方形貨柜的側(cè)面圖,其中DE=2.5m,EF=2m.將貨柜沿斜坡向上運送,當(dāng)BF=3.5m時,求點D離地面的高.(≈2.236,結(jié)果精確到0.1m)25.(10分)定義:如果三角形的兩個內(nèi)角與滿足,那么稱這樣的三角形為“類直角三角形”.嘗試運用(1)如圖1,在中,,,,是的平分線.①證明是“類直角三角形”;②試問在邊上是否存在點(異于點),使得也是“類直角三角形”?若存在,請求出的長;若不存在,請說明理由.類比拓展(2)如圖2,內(nèi)接于,直徑,弦,點是弧上一動點(包括端點,),延長至點,連結(jié),且,當(dāng)是“類直角三角形”時,求的長.26.(10分)如圖,A,B,C是⊙O上的點,,半徑為5,求BC的長.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】直接利用銳角三角函數(shù)關(guān)系分別計算得出答案.【詳解】∵,,∴,∴,故選項A,B錯誤,∵,∴,故選項C正確;選項D錯誤.故選C.此題主要考查了銳角三角函數(shù)關(guān)系,熟練掌握銳角三角函數(shù)關(guān)系是解題關(guān)鍵.2、C【分析】根據(jù)垂徑定理及圓周角定理對各選項進行逐一分析即可.【詳解】解:∵CD是⊙O的直徑,弦AB⊥CD于E,
∴AE=BE,,故A、B正確;
∵CD是⊙O的直徑,
∴∠DBC=90°,故D正確.
故選:C.本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關(guān)鍵.3、C【分析】主視圖是從正面看所得到的圖形,據(jù)此判斷即可.【詳解】解:A、正方體的主視圖是正方形,故此選項錯誤;B、圓柱的主視圖是長方形,故此選項錯誤;C、圓錐的主視圖是三角形,故此選項正確;D、六棱柱的主視圖是長方形,中間還有兩條豎線,故此選項錯誤;故選:C.此題主要考查了幾何體的三視圖,解此題的關(guān)鍵是熟練掌握幾何體的主視圖.4、A【解析】根據(jù)△ABC的面積=?AB?yA,先設(shè)A、B兩點坐標(biāo)(其y坐標(biāo)相同),然后計算相應(yīng)線段長度,用面積公式即可求解.【詳解】設(shè)A(,m),B(,m),則:△ABC的面積=,則a?b=1.故選:A.本題考查了反比例函數(shù)的性質(zhì)、反比例函數(shù)系數(shù)k的幾何意義、反比例函數(shù)圖象上點的坐標(biāo)特征,根據(jù)函數(shù)的特征設(shè)A、B兩點的坐標(biāo)是解題的關(guān)鍵.5、A【解析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值是易錯點,由于150000000有9位,所以可以確定n=9-1=1.【詳解】150000000km=1.5×101km.故選:A.此題考查科學(xué)記數(shù)法表示較大的數(shù)的方法,準(zhǔn)確確定a與n值是關(guān)鍵.6、A【分析】設(shè)反比例函數(shù)y=(k為常數(shù),k≠0),由于反比例函數(shù)的圖象經(jīng)過點(-2,3),則k=-6,然后根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征分別進行判斷.【詳解】設(shè)反比例函數(shù)y=(k為常數(shù),k≠0),∵反比例函數(shù)的圖象經(jīng)過點(-2,3),∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,∴點(2,-3)在反比例函數(shù)y=-的圖象上.故選A.本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.7、A【分析】將點(-2,6)代入得出k的值,再將代入即可【詳解】解:∵反比例函數(shù)的圖象經(jīng)過點,∴k=(-2)×6=-12,∴又點(3,n)在此反比例函數(shù)的圖象上,
∴3n=-12,
解得:n=-1.
故選:A本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,只要點在函數(shù)的圖象上,則一定滿足函數(shù)的解析式.反之,只要滿足函數(shù)解析式就一定在函數(shù)的圖象上.8、B【詳解】設(shè)全組共有x名同學(xué),那么每名同學(xué)送出的圖書是(x?1)本;則總共送出的圖書為x(x?1);又知實際互贈了210本圖書,則x(x?1)=210.故選:B.9、C【解析】點到圓心的距離大于半徑,得到點在圓外.【詳解】∵點P到圓心O的距離為4.5,⊙O的半徑為4,∴點P在圓外.故選:C.此題考查點與圓的位置關(guān)系,通過比較點到圓心的距離d的距離與半徑r的大小確定點與圓的位置關(guān)系.10、B【解析】根據(jù)反比例函數(shù)的定義,二次函數(shù)的定義,一次函數(shù)的定義對各選項分析判斷后利用排除法求解.【詳解】解:A.y=x是正比例函數(shù),不符合題意;B.y=2x2-1是二次函數(shù),符合題意;C.y=不是二次函數(shù),不符合題意;D.y=x2++1不是二次函數(shù),不符合題意.故選:B.本題考查了二次函數(shù)的定義,解題關(guān)鍵是掌握一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義.二、填空題(每小題3分,共24分)11、【分析】利用配方法將二次函數(shù)變成頂點式即可.【詳解】,∴h=2,k=-9,即h+k=2-9=-7.故答案為:-7.本題考查二次函數(shù)頂點式的性質(zhì),關(guān)鍵在于將一般式轉(zhuǎn)換為頂點式.12、【分析】根據(jù)圓的性質(zhì)和正六邊形的性質(zhì)證明△CDA≌△BDO,得出涂色部分即為扇形AOB的面積,根據(jù)扇形面積公式求解.【詳解】解:連接OA,OB,OC,AB,OA與BC交于D點∵正六邊形內(nèi)接于,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴圖中涂色部分的面積等于扇形AOB的面積為:.故答案為:.本題考查圓的內(nèi)接正多邊形的性質(zhì),根據(jù)圓的性質(zhì)結(jié)合正六邊形的性質(zhì)將涂色部分轉(zhuǎn)化成扇形面積是解答此題的關(guān)鍵.13、【分析】根據(jù)完全平方公式配方即可.【詳解】解:故答案為:.此題考查的是配方法,掌握完全平方公式是解決此題的關(guān)鍵.14、【分析】先求出底面圓的周長,然后根據(jù)扇形的面積公式:即可求出該圓錐的側(cè)面積.【詳解】解:底面圓的周長為,即圓錐的側(cè)面展開后的弧長為,∵母線長為9,∴圓錐的側(cè)面展開后的半徑為9,∴圓錐的側(cè)面積故答案為:此題考查的是求圓錐的側(cè)面積,掌握扇形的面積公式:是解決此題的關(guān)鍵.15、-1【解析】每次變化時,開口方向變化但形狀不變,則a=1,故開口向上時a=1,開口向下時a=-1;與x軸的交點在變化,可發(fā)現(xiàn)規(guī)律拋物線Cn與x軸交點的規(guī)律是(2n-2,0)和(2n,0),由兩點式y(tǒng)=a(x-x1)(x-x2)【詳解】由拋物線C1:y=-x(x-2),令y=0,∴-x(x-2)=0,解得x1∴與x軸的交點為O(0,0),A(2,0).拋物線C2的開口向上,且與x軸的交點為∴A(2,0)和A1(4,0),則拋物線C2:y=(x-2)(x-4);拋物線C3的開口向下,且與x軸的交點為∴A1(4,0)和A2(6,0),則拋物線C3:y=-(x-4)(x-6);拋物線C4的開口向上,且與x軸的交點為∴A2(6,0)和A3(8,0),則拋物線C4:y=(x-6)(x-8);同理:拋物線C2018的開口向上,且與x軸的交點為∴A2016(4034,0)和A2017(4036,0),則拋物線C2018:y=(x-4034)(x-4036);當(dāng)x=4035時,y=1×(-1)-1.故答案為:-1.本題考查了二次函數(shù)的性質(zhì)及旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是求出第2018段拋物線的解析式.16、【分析】由可得b=2a,然后代入求值.【詳解】解:由可得b=2a,所以=,故答案為.本題考查分式的化簡求值,掌握比例的性質(zhì)是本題的解題關(guān)鍵.17、【分析】根據(jù)特殊角的三角函數(shù)值計算即可.【詳解】解:根據(jù)特殊角的三角函數(shù)值可知:cos45°=,故答案為.本題主要考查了特殊角的三角函數(shù)值,比較簡單,熟練掌握特殊角的三角函數(shù)值是解答的關(guān)鍵.18、60°【分析】根據(jù)題意首先由多邊形外角和定理求出正多邊形的邊數(shù)n,再由正多邊形的中心角=,即可得出結(jié)果.【詳解】解:正多邊形的邊數(shù)為,故這個正多邊形的中心角為.故答案為:60°.本題考查正多邊形的性質(zhì)和多邊形外角和定理以及正多邊形的中心角的計算方法,熟練掌握正多邊形的性質(zhì),并根據(jù)題意求出正多邊形的邊數(shù)是解決問題的關(guān)鍵.三、解答題(共66分)19、(1)y=x1+4x-1;(1)∴m=,-1,或-3時S四邊形OBDC=1SS△BPD【解析】試題分析:(1)由x=0時帶入y=x-1求出y的值求出B的坐標(biāo),當(dāng)x=-3時,代入y=x-1求出y的值就可以求出A的坐標(biāo),由待定系數(shù)法就可以求出拋物線的解析式;(1)連結(jié)OP,由P點的橫坐標(biāo)為m可以表示出P、D的坐標(biāo),可以表示出S四邊形OBDC和1S△BPD建立方程求出其解即可.(3)如圖1,當(dāng)∠APD=90°時,設(shè)出P點的坐標(biāo),就可以表示出D的坐標(biāo),由△APD∽△FCD就可與求出結(jié)論,如圖3,當(dāng)∠PAD=90°時,作AE⊥x軸于E,就有,可以表示出AD,再由△PAD∽△FEA由相似三角形的性質(zhì)就可以求出結(jié)論.試題解析:∵y=x-1,∴x=0時,y=-1,∴B(0,-1).當(dāng)x=-3時,y=-4,∴A(-3,-4).∵y=x1+bx+c與直線y=x-1交于A、B兩點,∴∴∴拋物線的解析式為:y=x1+4x-1;(1)∵P點橫坐標(biāo)是m(m<0),∴P(m,m1+4m-1),D(m,m-1)如圖1①,作BE⊥PC于E,∴BE=-m.CD=1-m,OB=1,OC=-m,CP=1-4m-m1,∴PD=1-4m-m1-1+m=-3m-m1,∴解得:m1=0(舍去),m1=-1,m3=如圖1②,作BE⊥PC于E,∴BE=-m.PD=1-4m-m1+1-m=1-4m-m1,解得:m=0(舍去)或m=-3,∴m=,-1,或-3時S四邊形OBDC=1S△BPD;)如圖1,當(dāng)∠APD=90°時,設(shè)P(a,a1+4a-1),則D(a,a-1),∴AP=m+4,CD=1-m,OC=-m,CP=1-4m-m1,∴DP=1-4m-m1-1+m=-3m-m1.在y=x-1中,當(dāng)y=0時,x=1,∴(1,0),∴OF=1,∴CF=1-m.AF=4∵PC⊥x軸,∴∠PCF=90°,∴∠PCF=∠APD,∴CF∥AP,∴△APD∽△FCD,∴解得:m=1舍去或m=-1,∴P(-1,-5)如圖3,當(dāng)∠PAD=90°時,作AE⊥x軸于E,∴∠AEF=90°.CE=-3-m,EF=4,AF=4PD=1-m-(1-4m-m1)=3m+m1.∵PC⊥x軸,∵PC⊥x軸,∴∠DCF=90°,∴∠DCF=∠AEF,∴AE∥CD.∴AD=(-3-m)∵△PAD∽△FEA,∴∴m=-1或m=-3∴P(-1,-5)或(-3,-4)與點A重合,舍去,∴P(-1,-5).考點:二次函數(shù)綜合題.20、(1)y=;(2)-1【分析】(1)直接利用待定系數(shù)法求出反比例函數(shù)解析式即可;
(2)直接利用x=1代入求出答案.【詳解】解:(1)∵y是x的反比例函數(shù),∴設(shè)y=,當(dāng)x=-2時,y=8,∴k=(-2)×8=-16,∴y=;(2)當(dāng)x=1時,代入,y=-16÷1=-1.此題主要考查了待定系數(shù)法求反比例函數(shù)解析式,正確假設(shè)出解析式是解題關(guān)鍵.21、(1)10%;(2)選擇方案①更優(yōu)惠.【分析】(1)此題可以通過設(shè)出平均每次下調(diào)的百分率為,根據(jù)等量關(guān)系“起初每平米的均價下調(diào)百分率)下調(diào)百分率)兩次下調(diào)后的均價”,列出一元二次方程求出.(2)對于方案的確定,可以通過比較兩種方案得出的費用:①方案:下調(diào)后的均價兩年物業(yè)管理費②方案:下調(diào)后的均價,比較確定出更優(yōu)惠的方案.【詳解】解:(1)設(shè)平均每次降價的百分率是,依題意得,解得:,(不合題意,舍去).答:平均每次降價的百分率為.(2)方案①購房優(yōu)惠:4050×120×(1-0.98)=9720(元)方案②購房優(yōu)惠:70×120=8400(元)9720(元)>8400(元)答:選擇方案①更優(yōu)惠.本題結(jié)合實際問題考查了一元二次方程的應(yīng)用,根據(jù)題意找準(zhǔn)等量關(guān)系從而列出函數(shù)關(guān)系式是解題的關(guān)鍵.22、(1)2;(2)1【分析】(1)將A坐標(biāo)代入反比例函數(shù)解析式中,即可求出a的值;(2)由(1)求出的a值,確定出A坐標(biāo),代入直線解析式中求出b的值,令直線解析式中y=0求出x的值,確定出OC的長,△AOC以O(shè)C為底,A縱坐標(biāo)為高,利用三角形面積公式求出即可.【詳解】(1)將A(1,a)代入反比例解析式得:;(2)由a=2,得到A(1,2),代入直線解析式得:1+b=2,解得:b=1,即直線解析式為y=x+1,令y=0,解得:x=-1,即C(-1,0),OC=1,則S△AOC=×1×2=1.此題考查了反比例函數(shù)與一次函數(shù)的交點問題,涉及的知識有:坐標(biāo)與圖形性質(zhì),待定系數(shù)法確定函數(shù)解析式,三角形的面積求法,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.23、(1)6;(2)4【分析】(1)連接EF,證明△EFG∽△DCG.推出,求出DE即可解決問題.(2)由三角形的高相同,則三角形的面積之比等于底邊之比,求出,,即可求出答案.【詳解】解:(1)連接.∵是平行四邊形,∴點為的中點.∵為的中點,∴,且.∴.∴∵,∴,∴,∴;(2)∵,,,∴,∴,∵BE=DE,∴∴.本題考查相似三角形的判定和性質(zhì),平行四邊形的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.24、(1)BC=8m;(2)點D離地面的高為4.5m.【分析】(1)根據(jù)坡度定義直接解答即可;(2)作DS⊥BC,垂足為S,且與AB相交于H.證出∠GDH=∠SBH,根據(jù),得到GH=1m,利用勾股定理求出DH的長,然后求出BH=5m,進而求出HS,然后得到DS.【詳解】(1)∵坡度為i=1:2,AC=4m,∴BC=4×2=8m.(2)作DS⊥BC,垂足為S,且與AB相交于H.∵∠DGH=∠BSH,∠DHG=∠BHS,∴∠GDH=∠SBH,∵DG=EF=2m,∴GH=1m,∴DH=m,BH=BF+FH=3.5+(2.5-1)=5m,設(shè)HS=xm,則BS=2xm,∴x2+(2x)2=52,∴x=m,∴DS=+=2m≈4.5m.25、(1)①證明見解析,②存在,;(2)或.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)絡(luò)安全資深顧問面試題集
- 物流公司倉庫管理員招聘考試題
- 深度解析(2026)《GBT 18934-2003中國古典建筑色彩》
- LED成型機項目可行性分析報告范文
- 大氣監(jiān)測員工作考核標(biāo)準(zhǔn)及流程
- 如何成功應(yīng)對高難度績效管理專員面試問題集
- 總賬核算專員面試題及答案
- 特殊類型頭頸部鱗癌個體化治療策略
- 特殊傳染病在災(zāi)害期間的醫(yī)療隔離方案
- 特殊人群PD-1抑制劑用藥優(yōu)化策略
- 化學(xué)實驗室安全操作考核試卷
- 裝修電子合同范例
- 配電線路巡視培訓(xùn)
- 購物中心開業(yè)安保執(zhí)行方案
- 《積極心理學(xué)(第3版)》教學(xué)大綱
- 五年級上冊小數(shù)除法豎式計算100道及答案
- G-T 42582-2023 信息安全技術(shù) 移動互聯(lián)網(wǎng)應(yīng)用程序(App)個人信息安全測評規(guī)范
- 國外慣性技術(shù)發(fā)展與回顧
- 國開2023秋《幼兒園教育質(zhì)量評價》形考任務(wù)123 大作業(yè)參考答案
- 課本劇西門豹治鄴劇本
- 中華人民共和國簡史學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫2023年
評論
0/150
提交評論