版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.拋物線y=2x2,y=﹣2x2,y=2x2+1共有的性質是()A.開口向上 B.對稱軸都是y軸C.都有最高點 D.頂點都是原點2.下列一元二次方程中有兩個不相等的實數(shù)根的方程是()A.(x+2)2=0 B.x2+3=0 C.x2+2x-17=0 D.x2+x+5=03.若關于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍()A.且 B. C. D.4.若,則下列比例式中正確的是()A. B. C. D.5.已知3x=4y(x≠0),則下列比例式成立的是()A. B. C. D.6.如圖,分別與相切于點,為上一點,,則()A. B. C. D.7.如圖,4×2的正方形的網(wǎng)格中,在A,B,C,D四個點中任選三個點,能夠組成等腰三角形的概率為()A.1 B. C. D.8.點A(﹣3,2)關于x軸的對稱點A′的坐標為()A.(3,2) B.(3,﹣2) C.(﹣3,2) D.(﹣3,﹣2)9.下列事件中,是必然事件的是()A.拋擲一枚硬幣正面向上 B.從一副完整撲克牌中任抽一張,恰好抽到紅桃C.今天太陽從西邊升起 D.從4件紅衣服和2件黑衣服中任抽3件有紅衣服10.下列圖形:①國旗上的五角星,②有一個角為60°的等腰三角形,③一個半徑為π的圓,④兩條對角線互相垂直平分的四邊形,⑤函數(shù)y=的圖象,其中既是軸對稱又是中心對稱的圖形有()A.有1個 B.有2個 C.有3個 D.有4個二、填空題(每小題3分,共24分)11.已知以線段AC為對角線的四邊形ABCD(它的四個頂點A,B,C,D按順時針方向排列)中,AB=BC=CD,∠ABC=100°,∠CAD=40°,則∠BCD的度數(shù)為____________.12.一個4米高的電線桿的影長是6米,它臨近的一個建筑物的影長是36米.則這個建筑的高度是_____m.13.關于x的方程的解是,(a,m,b均為常數(shù),),則關于x的方程的解是________.14.某種傳染病,若有一人感染,經過兩輪傳染后將共有49人感染.設這種傳染病每輪傳染中平均一個人傳染了x個人,列出方程為______.15.二次函數(shù)的圖像開口方向向上,則______0.(用“=、>、<”填空)16.在平面直角坐標系中,點P(﹣2,1)關于原點的對稱點P′的坐標是_____________.17.如圖,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,則CF=______.18.如圖,在菱形c中,分別是邊,對角線與邊上的動點,連接,若,則的最小值是___.三、解答題(共66分)19.(10分)如圖,是的弦,于,交于,若,求的半徑.20.(6分)某超市銷售一種成本為每千克40元的水產品,經市場分析,若按每千克50元銷售,一個月能銷售出500千克;銷售單價每漲價1元,月銷售量就減少10千克.針對這種水產品的銷售情況,請解答以下問題:(1)每千克漲價x元,那么銷售量表示為千克,漲價后每千克利潤為元(用含x的代數(shù)式表示.)(2)要使得月銷售利潤達到8000元,又要“薄利多銷”,銷售單價應定為多少?這時應進貨多少千克?21.(6分)如圖,AB是⊙O的直徑,CD是⊙O的弦,且CD⊥AB于點E.(1)求證:∠BCO=∠D;(2)若,AE=1,求劣弧BD的長.22.(8分)某商品的進價為每件10元,現(xiàn)在的售價為每件15元,每周可賣出100件,市場調查反映:如果每件的售價每漲1元(售價每件不能高于20元),那么每周少賣10件.設每件漲價元(為非負整數(shù)),每周的銷量為件.(1)求與的函數(shù)關系式及自變量的取值范圍;(2)如果經營該商品每周的利潤是560元,求每件商品的售價是多少元?23.(8分)定義:連結菱形的一邊中點與對邊的兩端點的線段把它分成三個三角形,如果其中有兩個三角形相似,那么稱這樣的菱形為自相似菱形.(1)判斷下列命題是真命題,還是假命題?①正方形是自相似菱形;②有一個內角為60°的菱形是自相似菱形.③如圖1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E為BC中點,則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED.(2)如圖2,菱形ABCD是自相似菱形,∠ABC是銳角,邊長為4,E為BC中點.①求AE,DE的長;②AC,BD交于點O,求tan∠DBC的值.24.(8分)天空中有一個靜止的廣告氣球C,從地面A點測得C點的仰角為45°,從地面B測得仰角為60°,已知AB=20米,點C和直線AB在同一鉛垂平面上,求氣球離地面的高度.(結果精確到0.1米)25.(10分)如圖,在△ABC中,CD⊥AB,垂足為點D.若AB=12,CD=6,tanA=,求sinB+cosB的值.26.(10分)如圖,點是二次函數(shù)圖像上的任意一點,點在軸上.(1)以點為圓心,長為半徑作.①直線經過點且與軸平行,判斷與直線的位置關系,并說明理由.②若與軸相切,求出點坐標;(2)、、是這條拋物線上的三點,若線段、、的長滿足,則稱是、的和諧點,記做.已知、的橫坐標分別是,,直接寫出的坐標_______.
參考答案一、選擇題(每小題3分,共30分)1、B【詳解】(1)y=2x2開口向上,對稱軸為y軸,有最低點,頂點為原點;(2)y=﹣2x2開口向下,對稱軸為y軸,有最高點,頂點為原點;(3)y=2x2+1開口向上,對稱軸為y軸,有最低點,頂點為(0,1).故選B.2、C【分析】根據(jù)一元二次方程根的判別式,分別計算△的值,進行判斷即可.【詳解】解:選項A:△=0,方程有兩個相等的實數(shù)根;選項B、△=0-12=-12<0,方程沒有實數(shù)根;選項C、△=4-4×1×(-17)=4+68=72>0,方程有兩個不相等的實數(shù)根;選項D、△=1-4×5=-19<0,方程沒有實數(shù)根.故選:C.本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac;當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.3、A【分析】根據(jù)題意可得k滿足兩個條件,一是此方程是一元二次方程,所以二次項系數(shù)k不等于0,二是方程有兩個不相等的實數(shù)根,所以b2-4ac>0,根據(jù)這兩點列式求解即可.【詳解】解:根據(jù)題意得,k≠0,且(-6)2-36k>0,解得,且.故選:A.本題考查一元二次方程的定義及利用一元二次方程根的情況確定字母系數(shù)的取值范圍,根據(jù)需滿足定義及根的情況列式求解是解答此題的重要思路.4、C【分析】根據(jù)比例的基本性質直接判斷即可.【詳解】由,根據(jù)比例性質,兩邊同時除以6,可得到,故選C.本題考查比例的基本性質,掌握性質是解題關鍵.5、B【解析】根據(jù)比例的基本性質:內項之積等于外項之積,逐項判斷即可.【詳解】A、由=得4x=3y,故本選項錯誤;B、由=得3x=4y,故本選項正確;C、由=得xy=12,故本選項錯誤;D、由=得4x=3y,故本選項錯誤;故選:B.本題考查了比例的基本性質,熟練掌握內項之積等于外項之積是解題的關鍵.6、A【分析】連接OA,OB,根據(jù)切線的性質定理得到∠OAP=90°,∠OBP=90°,根據(jù)四邊形的內角和等于360°求出∠AOB,最后根據(jù)圓周角定理解答.【詳解】解:連接OA,OB,
∵PA,PB分別與⊙O相切于A,B點,
∴∠OAP=90°,∠OBP=90°,
∴∠AOB=360°-90°-90°-66°=114°,
由圓周角定理得,∠C=∠AOB=57°,
故選:A.本題考查的是切線的性質、圓周角定理,掌握在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半是解題的關鍵.7、B【分析】根據(jù)題意,先列舉所有的可能結果,然后選取能組成等腰三角形的結果,根據(jù)概率公式即可求出答案.【詳解】解:根據(jù)題意,在A,B,C,D四個點中任選三個點,有:△ABC、△ABD、△ACD、△BCD,共4個三角形;其中是等腰三角形的有:△ACD、△BCD,共2個;∴能夠組成等腰三角形的概率為:;故選:B.本題考查了列舉法求概率,等腰三角形的性質,勾股定理與網(wǎng)格問題,解題的關鍵是熟練掌握列舉法求概率,以及正確得到等腰三角形的個數(shù).8、D【分析】直接利用關于x軸對稱點的性質得出符合題意的答案.【詳解】解:點A(﹣3,2)關于x軸的對稱點A′的坐標為:(﹣3,﹣2),故選:D.本題考查了關于x軸對稱的點的坐標特征,關于x軸對稱的點:橫坐標不變,縱坐標互為相反數(shù).9、D【分析】必然事件是指在一定條件下一定會發(fā)生的事件,根據(jù)事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】解:A、拋擲一枚硬幣正面向上,是隨機事件,故本選項錯誤;
B、從一副完整撲克牌中任抽一張,恰好抽到紅桃,是隨機事件.故本選項錯誤;
C、今天太陽從西邊升起,是不可能事件,故本選項錯誤;
D、從4件紅衣服和2件黑衣服中任抽3件有紅衣服,是必然事件,故本選項正確.
故選:D.本題考查了事件發(fā)生的可能性,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.10、C【分析】根據(jù)中心對稱圖形和軸對稱圖形的定義可得答案.【詳解】解:①國旗上的五角星,是軸對稱圖形,不是中心對稱圖形;②有一個角為60°的等腰三角形,是軸對稱圖形,是中心對稱圖形;③一個半徑為π的圓,是軸對稱圖形,是中心對稱圖形;④兩條對角線互相垂直平分的四邊形,是軸對稱圖形,是中心對稱圖形;⑤函數(shù)y=的圖象,不是軸對稱圖形,是中心對稱圖形;既是軸對稱又是中心對稱的圖形有3個,故選:C.此題主要考查了軸對稱圖形和中心對稱圖形,以及反比例函數(shù)圖象和線段垂直平分線,關鍵是掌握軸對稱圖形和中心對稱圖形定義.二、填空題(每小題3分,共24分)11、80°或100°【解析】作出圖形,證明Rt△ACE≌Rt△ACF,Rt△BCE≌Rt△DCF,分類討論可得解.【詳解】∵AB=BC,∠ABC=100°,∴∠1=∠2=∠CAD=40°,∴AD∥BC.點D的位置有兩種情況:如圖①,過點C分別作CE⊥AB于E,CF⊥AD于F,∵∠1=∠CAD,∴CE=CF,在Rt△ACE與Rt△ACF中,,∴Rt△ACE≌Rt△ACF,∴∠ACE=∠ACF.在Rt△BCE與Rt△DCF中,,∴Rt△BCE≌Rt△DCF,∴∠BCE=∠DCF,∴∠ACD=∠2=40°,∴∠BCD=80°;如圖②,∵AD′∥BC,AB=CD′,∴四邊形ABCD′是等腰梯形,∴∠BCD′=∠ABC=100°,綜上所述,∠BCD=80°或100°,故答案為80°或100°.本題考查了全等三角形的判定與性質,等腰梯形的判定與性質,本題關鍵是證明Rt△ACE≌Rt△ACF,Rt△BCE≌Rt△DCF,同時注意分類思想的應用.12、24米.【分析】先設建筑物的高為h米,再根據(jù)同一時刻物高與影長成正比列出關系式求出h的值即可.【詳解】設建筑物的高為h米,由題意可得:則4:6=h:36,解得:h=24(米).故答案為24米.本題考查的是相似三角形的應用,熟知同一時刻物高與影長成正比是解答此題的關鍵.13、x1=-12,x2=1【分析】把后面一個方程中的x+3看作一個整體,相當于前面方程中的x來求解.【詳解】解:∵關于x的方程的解是,(a,m,b均為常數(shù),a≠0),∴方程變形為,即此方程中x+3=-9或x+3=11,解得x1=-12,x2=1,故方程的解為x1=-12,x2=1.故答案為x1=-12,x2=1.此題主要考查了方程解的含義.注意觀察兩個方程的特點,運用整體思想進行簡便計算.14、x(x+1)+x+1=1.【分析】設每輪傳染中平均一人傳染x人,那么經過第一輪傳染后有x人被感染,那么經過兩輪傳染后有x(x+1)+x+1人感染,列出方程即可.【詳解】解:設每輪傳染中平均一人傳染x人,則第一輪后有x+1人感染,第二輪后有x(x+1)+x+1人感染,由題意得:x(x+1)+x+1=1.故答案為:x(x+1)+x+1=1.本題主要考查了由實際問題抽象出一元二次方程,掌握一元二次方程是解題的關鍵.15、>【分析】根據(jù)題意直接利用二次函數(shù)的圖象與a的關系即可得出答案.【詳解】解:因為二次函數(shù)的圖像開口方向向上,所以有>1.故填>.本題主要考查二次函數(shù)的性質,掌握二次項系數(shù)a與拋物線的關系是解題的關鍵,圖像開口方向向上,>1;圖像開口方向向下,<1.16、(2,﹣1)【詳解】解:點P(﹣2,1)關于原點的對稱點P′的坐標是(2,﹣1).故答案為(2,﹣1).本題考查了關于原點對稱的點的坐標的特點,注意掌握兩個點關于原點對稱時,它們的坐標符號相反.17、【解析】試題分析:證△AEF≌△ADF,推出AE=AD=5,EF=DF,在△ABE中,由勾股定理求出BE=3,求出CE=2,設CF=x,則EF=DF=4-x,在Rt△CFE中,由勾股定理得出方程(4-x)2=x2+22,求出x即可.試題解析:∵AF平分∠DAE,∴∠DAF=∠EAF,∵四邊形ABCD是矩形,∴∠D=∠C=90°,AD=BC=5,AB=CD=4,∵EF⊥AE,∴∠AEF=∠D=90°,在△AEF和△ADF中,,∴△AEF≌△ADF(AAS),∴AE=AD=5,EF=DF,在△ABE中,∠B=90°,AE=5,AB=4,由勾股定理得:BE=3,∴CE=5-3=2,設CF=x,則EF=DF=4-x,在Rt△CFE中,由勾股定理得:EF2=CE2+CF2,∴(4-x)2=x2+22,x=,CF=.考點:矩形的性質.18、【分析】作點Q關于BD對稱的對稱點Q’,連接PQ,根據(jù)兩平行線之間垂線段最短,即有當E、P、Q’在同一直線上且時,的值最小,再利用菱形的面積公式,求出的最小值.【詳解】作點Q關于BD對稱的對稱點Q’,連接PQ.∵四邊形ABCD為菱形∴,∴當E、P、Q’在同一直線上時,的值最小∵兩平行線之間垂線段最短∴當時,的值最小∵∴,∴∵∴解得∴的最小值是.故答案為:.本題考查了菱形的綜合應用題,掌握菱形的面積公式以及兩平行線之間垂線段最短是解題的關鍵.三、解答題(共66分)19、5.【分析】連接OB,由垂徑定理得BE=CE=4,在中,根據(jù)勾股定理列方程求解.【詳解】解:連接設的半徑為,則在中,由勾股定理得,即解得的半徑為本題考查了圓的垂徑定理,利用勾股定理列方程求解是解答此題的關鍵.20、(1)(500﹣10x);(10+x);(2)銷售單價為60元時,進貨量為400千克.【分析】(1)根據(jù)已知直接得出每千克水產品獲利,進而表示出銷量,即可得出答案;
(2)利用每千克水產品獲利×月銷售量=總利潤,進而求出答案.【詳解】(1)由題意可知:銷售量為(500﹣10x)千克,漲價后每千克利潤為:50+x﹣40=10+x(千克)故答案是:(500﹣10x);(10+x);(2)由題意可列方程:(10+x)(500﹣10x)=8000,整理,得:x2﹣40x+300=0解得:x1=10,x2=30,因為又要“薄利多銷”所以x=30不符合題意,舍去.故銷售單價應漲價10元,則銷售單價應定為60元;這時應進貨=500﹣10×10=400千克.本題主要考查了一元二次方程的應用,正確表示出月銷量是解題關鍵.21、(1)見解析;(2).【分析】(1)由等腰三角形的性質與圓周角定理,易得∠BCO=∠B=∠D;
(2)由垂徑定理可求得CE與DE的長,然后證得△BCE∽△DAE,再由相似三角形的對應邊成比例,求得BE的長,繼而求得直徑與半徑,再求出圓心角∠BOD即可解決問題;【詳解】(1)證明:∵OB=OC,∴∠BCO=∠B,∵∠B=∠D,∴∠BCO=∠D;(2)解:連接OD.∵AB是⊙O的直徑,CD⊥AB,∴,∵∠B=∠D,∠BEC=∠DEC,∴△BCE∽△DAE,∴AE:CE=DE:BE,∴,解得:BE=3,∴AB=AE+BE=4,∴⊙O的半徑為2,∵,∴∠EOD=60°,∴∠BOD=120°,∴的長.此題考查圓周角定理、垂徑定理、相似三角形的判定與性質以及等腰三角形的性質.注意在同圓或等圓中,同弧或等弧所對的圓周角相等.證得△BCE∽△DAE是解題關鍵.22、(1),;(2)每件的售價是17元或者18元.【分析】(1)根據(jù)“每件的售價每漲1元,那么每周少賣10件”,即可求出y與x的函數(shù)關系式,然后根據(jù)x的實際意義和售價每件不能高于20元即可求出x的取值范圍;(2)根據(jù)總利潤=單件利潤×件數(shù),列方程,并解方程即可.【詳解】(1)解:與的函數(shù)關系式為∵售價每件不能高于20元∴∴自變量的取值范圍是;(2)解:設每件漲價元(為非負整數(shù)),則每周的銷量為件,根據(jù)題意列方程,解得:,所以,每件的售價是17元或者18元.答:如果經營該商品每周的利潤是560元,求每件商品的售價是17元或者18元.此題考查的是一次函數(shù)的應用和一元二次方程的應用,掌握實際問題中的等量關系是解決此題的關鍵.23、(1)見解析;(2)①AE=2,DE=4;②tan∠DBC=.【分析】(1)①證明△ABE≌△DCE(SAS),得出△ABE∽△DCE即可;②連接AC,由自相似菱形的定義即可得出結論;③由自相似菱形的性質即可得出結論;(2)①由(1)③得△ABE∽△DEA,得出,求出AE=2,DE=4即可;②過E作EM⊥AD于M,過D作DN⊥BC于N,則四邊形DMEN是矩形,得出DN=EM,DM=EN,∠M=∠N=90°,設AM=x,則EN=DM=x+4,由勾股定理得出方程,解方程求出AM=1,EN=DM=5,由勾股定理得出DN=EM==,求出BN=7,再由三角函數(shù)定義即可得出答案.【詳解】解:(1)①正方形是自相似菱形,是真命題;理由如下:如圖3所示:∵四邊形ABCD是正方形,點E是BC的中點,∴AB=CD,BE=CE,∠ABE=∠DCE=90°,在△ABE和△DCE中,∴△ABE≌△DCE(SAS),∴△ABE∽△DCE,∴正方形是自相似菱形,故答案為:真命題;②有一個內角為60°的菱形是自相似菱形,是假命題;理由如下:如圖4所示:連接AC,∵四邊形ABCD是菱形,∴AB=BC=CD,AD∥BC,AB∥CD,∵∠B=60°,∴△ABC是等邊三角形,∠DCE=120°,∵點E是BC的中點,∴AE⊥BC,∴∠AEB=∠DAE=90°,∴只能△AEB與△DAE相似,∵AB∥CD,∴只能∠B=∠AED,若∠AED=∠B=60°,則∠CED=180°﹣90°﹣60°=30°,∴∠CDE=180°﹣120°﹣30°=30°,∴∠CED=∠CDE,∴CD=CE,不成立,∴有一個內角為60°的菱形不是自相似菱形,故答案為:假命題;③若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E為BC中點,則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED,是真命題;理由如下:∵∠ABC=α(0°<α<90°),∴∠C>90°,且∠ABC+∠C=180°,△ABE與△EDC不能相似,同理△AED與△EDC也不能相似,∵四邊形ABCD是菱形,∴AD∥BC,∴∠AEB=∠DAE,當∠AED=∠B時,△ABE∽△DEA,∴若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E為BC中點,則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED,故答案為:真命題;(2)①∵菱形ABCD是自相似菱形,∠ABC是銳角,邊長為4,E為BC中點,∴BE=2,AB=AD=4,由(1)③得:△ABE∽△DEA,∴∴AE2=BE?AD=2×4=8,∴AE=2,DE===4,故答案為:AE=2;DE=4;②過E作EM⊥AD于M,過D作DN⊥BC于N,如圖2所示:則四邊形DMEN是矩形,∴DN=EM,DM=EN,∠M=∠N=90°,設AM=x,則EN=DM=x+4,由勾股定理得:EM2=DE2﹣DM2=AE2﹣AM2,即(4)2﹣(x+4)2=(2)2﹣x2,解得:x=1,∴AM=1,EN=DM=5,∴DN=EM==,在Rt△BDN中,∵BN=BE+EN=2+5=7,∴tan∠DBC=,故答案為:.本題考查了自
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年湖南郴州市百福控股集團有限公司招聘9人參考考試題庫附答案解析
- 蔬菜生產基地制度
- 農業(yè)生產技術指導制度
- 分類生產現(xiàn)場管理制度
- 科研生產實驗室管理制度
- 2026年濰坊青州市事業(yè)單位公開招聘綜合類崗位人員(32人)參考考試試題附答案解析
- 生產成包梯級制度
- 2026上半年黑龍江省衛(wèi)生健康委員會直屬事業(yè)單位招聘125人備考考試試題附答案解析
- 鎮(zhèn)建立農產品生產制度
- 無視項目生產管理制度
- 2026湖南師大附中雨花學校春季合同制教師招聘考試備考題庫及答案解析
- 2026年云南省影視協(xié)會招聘工作人員(2人)筆試參考題庫及答案解析
- 防寒防凍防滑安全培訓課件
- 駕校教練員安全知識培訓課件
- 《危險化學品安全法》解讀與要點
- 電力網(wǎng)絡安全培訓教學課件
- 2025年宜昌市“招才興業(yè)”市直事業(yè)單位人才引進47人·重慶大學站筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 上海市徐匯區(qū)上海中學2025-2026學年高三上學期期中考試英語試題(含答案)
- 2025秋滬科版(五四制)(新教材)初中科學六年級第一學期知識點及期末測試卷及答案
- 孕婦貧血教學課件
- 5年(2021-2025)山東高考生物真題分類匯編:專題17 基因工程(解析版)
評論
0/150
提交評論