版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025年新高考數(shù)學(xué)模擬檢測(cè)卷(解析幾何與曲線積分應(yīng)用題專項(xiàng)試題)考試時(shí)間:______分鐘總分:______分姓名:______一、選擇題(本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。)1.已知點(diǎn)A(1,2)和點(diǎn)B(3,0),若直線l過(guò)點(diǎn)P(2,1),且與線段AB所成的夾角為30°,則直線l的斜率可能為()A.B.C.D.2.橢圓+=1(a>b>0)的離心率為,若其右焦點(diǎn)F到左準(zhǔn)線的距離為5,則橢圓的方程為()A.B.C.D.3.雙曲線-=1的漸近線方程為()A.B.C.D.4.拋物線y2=4x的焦點(diǎn)到準(zhǔn)線的距離為()A.1B.2C.3D.45.已知函數(shù)f(x)=x3-3x2+2,則f(x)的極小值點(diǎn)為()A.0B.1C.2D.36.若曲線y=lnx在點(diǎn)(1,0)處的切線與直線y=x相交,則該切線的斜率為()A.1B.2C.-1D.-27.已知函數(shù)f(x)=x2e-x,則f(x)在區(qū)間(-∞,+∞)上的最大值為()A.1B.2C.eD.e28.已知函數(shù)g(x)=sin2x+cos2x,則g(x)的最小正周期為()A.πB.2πC.D.9.已知向量a=(1,2),b=(3,-1),則向量a+b的模長(zhǎng)為()A.B.C.D.10.已知點(diǎn)P(x,y)在圓x2+y2=1上運(yùn)動(dòng),則點(diǎn)P到直線3x+4y-5=0的距離的最小值為()A.B.C.D.二、填空題(本大題共5小題,每小題5分,共25分。請(qǐng)將答案填在答題卡對(duì)應(yīng)位置。)11.已知直線l1:x+y-1=0和直線l2:ax-y+2=0互相平行,則實(shí)數(shù)a的值為_(kāi)_____。12.已知橢圓+=1的焦點(diǎn)在x軸上,且其短軸長(zhǎng)為2,則橢圓的離心率為_(kāi)_____。13.已知雙曲線-=1的焦點(diǎn)到漸近線的距離為,則雙曲線的離心率為_(kāi)_____。14.已知函數(shù)f(x)=x3-3x2+2,則f(x)的極大值點(diǎn)為_(kāi)_____。15.已知函數(shù)g(x)=sin2x+cos2x,則g(x)在區(qū)間[0,π]上的最大值為_(kāi)_____。三、解答題(本大題共5小題,共75分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。)16.(本小題滿分15分)已知橢圓+=1的右焦點(diǎn)為F,過(guò)點(diǎn)F作直線l與橢圓交于A、B兩點(diǎn),且AF:FB=1:2。求直線l的方程。17.(本小題滿分15分)已知雙曲線-=1的焦點(diǎn)為F1、F2,過(guò)點(diǎn)F1作直線l與雙曲線交于M、N兩點(diǎn),且MN的長(zhǎng)度為2a。求直線l的方程。18.(本小題滿分15分)已知函數(shù)f(x)=x3-3x2+2,求f(x)在區(qū)間[-2,3]上的最大值和最小值。19.(本小題滿分15分)已知函數(shù)g(x)=sin2x+cos2x,求g(x)在區(qū)間[0,π]上的最大值和最小值,并指出取得最大值和最小值時(shí)的x值。20.(本小題滿分15分)已知點(diǎn)P(x,y)在圓x2+y2=1上運(yùn)動(dòng),求點(diǎn)P到直線3x+4y-5=0的距離的最小值,并求取得最小值時(shí)點(diǎn)P的坐標(biāo)。三、解答題(本大題共5小題,共75分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。)21.(本小題滿分15分)已知點(diǎn)A(1,0),點(diǎn)B(0,1),動(dòng)點(diǎn)P到直線AB的距離等于它到原點(diǎn)O的距離。求動(dòng)點(diǎn)P的軌跡方程。22.(本小題滿分15分)在直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(1,0),點(diǎn)B(0,1)。若點(diǎn)C在曲線y=lnx上運(yùn)動(dòng),求△ABC面積的最小值。23.(本小題滿分15分)已知橢圓+=1(a>b>0)的離心率為,且其右焦點(diǎn)到左準(zhǔn)線的距離為5。過(guò)橢圓上一點(diǎn)P作橢圓的切線,若該切線與x軸、y軸分別交于M、N兩點(diǎn),求△MON面積的最小值。24.(本小題滿分15分)設(shè)函數(shù)f(x)=x3-3x2+2,求函數(shù)f(x)的極值點(diǎn),并用導(dǎo)數(shù)證明這些點(diǎn)是極值點(diǎn)。25.(本小題滿分15分)已知函數(shù)g(x)=sin2x-cos2x,求函數(shù)g(x)在區(qū)間[0,2π]上的最大值和最小值,并指出取得最大值和最小值時(shí)的x值。本次試卷答案如下一、選擇題1.D解析:設(shè)直線l的斜率為k,則直線l的方程為y-1=k(x-2)。點(diǎn)A(1,2)到直線l的斜率為(2-1)/(1-2)=-1,同理點(diǎn)B(3,0)到直線l的斜率為(0-1)/(3-2)=-1。由夾角公式tan30°=|(k-(-1))/(1+k(-1))|,解得k=√3-1或k=1-√3,即k=±(√3-1)。選項(xiàng)中只有D符合。2.B解析:由離心率e=√(1-(b2/a2)),且右焦點(diǎn)F到左準(zhǔn)線的距離為5,即a/e=5。又因?yàn)閑=1/2,所以a=5/2,b2=a2(1-e2)=25/4*3/4=75/16。故橢圓方程為x2/(25/4)+y2/(75/16)=1,即4x2+16y2=75。3.C解析:雙曲線-=1的漸近線方程為y=±(b/a)x。由c2=a2+b2,且a>b>0,得漸近線方程為y=±(√(c2-a2)/a)x=±(√(b2/a2))x=±(b/a)x。4.B解析:拋物線y2=4x的焦點(diǎn)為(1,0),準(zhǔn)線方程為x=-1。焦點(diǎn)到準(zhǔn)線的距離為1-(-1)=2。5.B解析:f(x)=x3-3x2+2,f'(x)=3x2-6x。令f'(x)=0,得x=0或x=2。f''(x)=6x-6,f''(0)=-6<0,f''(2)=6>0,故x=1為極小值點(diǎn)。6.A解析:曲線y=lnx在點(diǎn)(1,0)處的切線斜率為f'(1)=1/x|?=1。切線方程為y-0=1(x-1),即y=x-1。切線與直線y=x相交,解得x=1/2,y=1/2。故切線斜率為1。7.A解析:f(x)=x2e??,f'(x)=2xe??-x2e??=e??(2x-x2)。令f'(x)=0,得x=0或x=2。f''(x)=e??(2-4x+x2),f''(0)=2>0,f''(2)=e?2(2-8+4)=-2e?2<0,故x=0為極大值點(diǎn),x=2為極小值點(diǎn)。f(0)=0,f(2)=4e?2。故最大值為1。8.A解析:g(x)=sin2x+cos2x=1。最小正周期為π。9.√10解析:向量a+b=(1+3,2-1)=(4,1)。模長(zhǎng)為√(42+12)=√17。10.解析:點(diǎn)P到直線3x+4y-5=0的距離d=|3x+4y-5|/√(32+42)。P在圓x2+y2=1上,x2+y2=1。d的最小值即圓心(0,0)到直線的距離減去半徑1,即|0+0-5|/5-1=1-1=0。但實(shí)際計(jì)算應(yīng)為√(52-12)/5-1=√24/5-1=√6/5。二、填空題11.-1解析:l1:x+y-1=0的斜率為-1。l2:ax-y+2=0的斜率為a。l1∥l2,則-1=a,故a=-1。12.√2/2解析:橢圓短軸長(zhǎng)為2b=2,b=1。c2=a2-b2=a2-1。離心率e=c/a=a2-1/a。由c/a=√2/2,得a2-1/a=√2/2,a2=√2+1,a=√(√2+1)。e=√2/2。13.2解析:雙曲線漸近線方程為y=±(b/a)x。焦點(diǎn)到漸近線的距離為c/b。離心率e=c/a。e=c/b,故e2=b2/a2。c2=a2+b2,代入得b2/a2=a2/b2,b?=a?,b=a。e=c/a=a/a=1。但題目要求e=2,故解法有誤。重新思考:焦點(diǎn)到漸近線的距離為c/b,e=c/a,故e=b/a。由c2=a2+b2,得b2=a2(e2-1)。e=b/a,代入得e2=a2(e2-1)/a2,e2=e2-1,矛盾。故離心率無(wú)法為2。14.2解析:f(x)=x3-3x2+2,f'(x)=3x2-6x。令f'(x)=0,得x=0或x=2。f''(x)=6x-6,f''(0)=-6<0,f''(2)=6>0,故x=0為極大值點(diǎn),x=2為極小值點(diǎn)。15.√2解析:g(x)=sin2x+cos2x=1。最大值為√2,當(dāng)sin2x+cos2x=1且sinx和cosx同號(hào)時(shí),即sinx=cosx=√2/2,x=π/4或5π/4。三、解答題16.解析:設(shè)直線l與橢圓交于A(x1,y1),B(x2,y2)。由AF:FB=1:2,得x1=3x2。代入橢圓方程+=1,得(x22+9x22)/(9+x22)+(y12+y22)/(9+x22)=1。由y12=9x12/4,y22=9x22,代入得(10x22)/(9+x22)+(9x22)/(9+x22)=1,解得x22=9/4,x2=±3/2。故直線l方程為y-1=±√3(x-2)。17.解析:設(shè)直線l與雙曲線交于M(x1,y1),N(x2,y2)。由MF1:F1N=1:2,得x1=-2x2。代入雙曲線方程-=1,得(4x22+b2)/(4+b2)-(4x12+b2)/(4+b2)=1。由x1=-2x2,代入得(4x22+b2)/(4+b2)-(16x22+b2)/(4+b2)=1,解得x22=4/(4+b2),x2=±2/√(4+b2)。故直線l方程為y=±(b/2)x。18.解析:f(x)=x3-3x2+2,f'(x)=3x2-6x。令f'(x)=0,得x=0或x=2。f(-2)=-10,f(0)=2,f(2)=0,f(3)=2。故最大值為2,最小值為-10。19.解析:g(x)=sin2x+cos2x=1。最大值為1,最小值為1。當(dāng)sinx=cosx=√2/2,x=π/4或5π/4時(shí)取得。
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年零售行業(yè)數(shù)字化轉(zhuǎn)型報(bào)告及智慧零售報(bào)告
- 汽車貨物運(yùn)輸質(zhì)量管理操作指南
- 拍賣(mài)行業(yè)流程規(guī)范及典型案例分享
- 企業(yè)保密補(bǔ)貼制度操作指南
- 長(zhǎng)沙市初中體育與健康課程學(xué)業(yè)評(píng)價(jià)方案試題及答案
- 中小學(xué)生防溺水教育推廣方案
- 軟件外包合同范本及風(fēng)險(xiǎn)防范建議
- 智慧物流采購(gòu)作業(yè)流程優(yōu)化方案
- 小學(xué)語(yǔ)文一年級(jí)微課設(shè)計(jì)方案集
- 2026年光伏光熱儲(chǔ)能技術(shù)報(bào)告及未來(lái)五至十年可再生能源報(bào)告
- 2025年移動(dòng)式壓力容器充裝R2作業(yè)證考試練習(xí)題庫(kù)及答案
- 節(jié)能與新能源汽車技術(shù)路線圖2.0
- 保育員配合教學(xué)培訓(xùn)工作指南
- FSSC22000 V6食品安全管理體系管理手冊(cè)及程序文件
- 2025年保安員理論考試100題(附答案)
- 年終歲末的安全培訓(xùn)課件
- 3單元4 彩虹 課件 2025-2026學(xué)年統(tǒng)編版小學(xué)語(yǔ)文二年級(jí)上冊(cè)
- DBJT15-140-2018 廣東省市政基礎(chǔ)設(shè)施工程施工安全管理標(biāo)準(zhǔn)
- 肝豆?fàn)詈俗冃愿涡阅X病護(hù)理查房
- 特殊作業(yè)之-斷路作業(yè)安全教育培訓(xùn)
- 中華醫(yī)學(xué)會(huì)麻醉學(xué)分會(huì)困難氣道管理指南
評(píng)論
0/150
提交評(píng)論