貴州省六盤水市名校2026屆中考聯(lián)考數(shù)學(xué)試卷含解析_第1頁
貴州省六盤水市名校2026屆中考聯(lián)考數(shù)學(xué)試卷含解析_第2頁
貴州省六盤水市名校2026屆中考聯(lián)考數(shù)學(xué)試卷含解析_第3頁
貴州省六盤水市名校2026屆中考聯(lián)考數(shù)學(xué)試卷含解析_第4頁
貴州省六盤水市名校2026屆中考聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

貴州省六盤水市名校2026屆中考聯(lián)考數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,AB是⊙O的直徑,點C、D是圓上兩點,且∠AOC=126°,則∠CDB=()A.54° B.64° C.27° D.37°2.已知二次函數(shù)y=3(x﹣1)2+k的圖象上有三點A(,y1),B(2,y2),C(﹣,y3),則y1、y2、y3的大小關(guān)系為()A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y13.明明和亮亮都在同一直道A、B兩地間做勻速往返走鍛煉明明的速度小于亮亮的速度忽略掉頭等時間明明從A地出發(fā),同時亮亮從B地出發(fā)圖中的折線段表示從開始到第二次相遇止,兩人之間的距離米與行走時間分的函數(shù)關(guān)系的圖象,則A.明明的速度是80米分 B.第二次相遇時距離B地800米C.出發(fā)25分時兩人第一次相遇 D.出發(fā)35分時兩人相距2000米4.在下列各平面圖形中,是圓錐的表面展開圖的是()A. B. C. D.5.如圖,把一個矩形紙片ABCD沿EF折疊后,點D、C分別落在D′、C′的位置,若∠EFB=65°,則∠AED′為()。A.70° B.65° C.50° D.25°6.如圖是某零件的示意圖,它的俯視圖是()A. B. C. D.7.如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點A的坐標(biāo)為(﹣1,1),點B在x軸正半軸上,點D在第三象限的雙曲線上,過點C作CE∥x軸交雙曲線于點E,連接BE,則△BCE的面積為()A.5 B.6 C.7 D.88.在平面直角坐標(biāo)系中,將點P(﹣4,2)繞原點O順時針旋轉(zhuǎn)90°,則其對應(yīng)點Q的坐標(biāo)為()A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)9.下列判斷正確的是()A.任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上B.天氣預(yù)報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨C.“籃球隊員在罰球線上投籃一次,投中”為隨機(jī)事件D.“a是實數(shù),|a|≥0”是不可能事件10.已知函數(shù),則使y=k成立的x值恰好有三個,則k的值為()A.0 B.1 C.2 D.3二、填空題(共7小題,每小題3分,滿分21分)11.拋物線y=3x2﹣6x+a與x軸只有一個公共點,則a的值為_____.12.已知一次函數(shù)的圖象與直線y=x+3平行,并且經(jīng)過點(﹣2,﹣4),則這個一次函數(shù)的解析式為_____.13.如圖,在平面直角坐標(biāo)系中,點P的坐標(biāo)為(0,4),直線y=x-3與x軸、y軸分別交于點A、B,點M是直線AB上的一個動點,則PM的最小值為________.14.如圖,△ABC是直角三角形,∠C=90°,四邊形ABDE是菱形且C、B、D共線,AD、BE交于點O,連接OC,若BC=3,AC=4,則tan∠OCB=_____15.將三角形紙片()按如圖所示的方式折疊,使點落在邊上,記為點,折痕為,已知,,若以點,,為頂點的三角形與相似,則的長度是______.16.如圖,矩形ABCD中,BC=6,CD=3,以AD為直徑的半圓O與BC相切于點E,連接BD則陰影部分的面積為____(結(jié)果保留π)17.如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長是_____cm.三、解答題(共7小題,滿分69分)18.(10分)先化簡,然后從-2≤x≤2的范圍內(nèi)選取一個合適的整數(shù)作為x的值代入求值.19.(5分)如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+m與雙曲線y=﹣相交于點A(m,2).(1)求直線y=kx+m的表達(dá)式;(2)直線y=kx+m與雙曲線y=﹣的另一個交點為B,點P為x軸上一點,若AB=BP,直接寫出P點坐標(biāo).20.(8分)如圖,△ABC是等邊三角形,AO⊥BC,垂足為點O,⊙O與AC相切于點D,BE⊥AB交AC的延長線于點E,與⊙O相交于G、F兩點.(1)求證:AB與⊙O相切;(2)若等邊三角形ABC的邊長是4,求線段BF的長?21.(10分)為進(jìn)一步打造“宜居重慶”,某區(qū)擬在新竣工的矩形廣場的內(nèi)部修建一個音樂噴泉,要求音樂噴泉M到廣場的兩個入口A、B的距離相等,且到廣場管理處C的距離等于A和B之間距離的一半,A、B、C的位置如圖所示.請在答題卷的原圖上利用尺規(guī)作圖作出音樂噴泉M的位置.(要求:不寫已知、求作、作法和結(jié)論,保留作圖痕跡,必須用鉛筆作圖)22.(10分)(1)計算:|﹣3|+(π﹣2018)0﹣2sin30°+()﹣1.(2)先化簡,再求值:(x﹣1)÷(﹣1),其中x為方程x2+3x+2=0的根.23.(12分)如圖,四邊形ABCD中,∠C=90°,AD⊥DB,點E為AB的中點,DE∥BC.(1)求證:BD平分∠ABC;(2)連接EC,若∠A=30°,DC=,求EC的長.24.(14分)某校檢測學(xué)生跳繩水平,抽樣調(diào)查了部分學(xué)生的“1分鐘跳繩”成績,并制成了下面的頻數(shù)分布直方圖(每小組含最小值,不含最大值)和扇形圖(1)D組的人數(shù)是人,補(bǔ)全頻數(shù)分布直方圖,扇形圖中m=;(2)本次調(diào)查數(shù)據(jù)中的中位數(shù)落在組;(3)如果“1分鐘跳繩”成績大于或等于120次為優(yōu)秀,那么該校4500名學(xué)生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有多少人?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

由∠AOC=126°,可求得∠BOC的度數(shù),然后由圓周角定理,求得∠CDB的度數(shù).【詳解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°故選:C.【點睛】此題考查了圓周角定理.注意在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.2、D【解析】試題分析:根據(jù)二次函數(shù)的解析式y(tǒng)=3(x-1)2+k,可知函數(shù)的開口向上,對稱軸為x=1,根據(jù)函數(shù)圖像的對稱性,可得這三點的函數(shù)值的大小為y3>y2>y1.故選D點睛:此題主要考查了二次函數(shù)的圖像與性質(zhì),解題時先根據(jù)頂點式求出開口方向,和對稱軸,然后根據(jù)函數(shù)的增減性比較即可,這是中考常考題,難度有點偏大,注意結(jié)合圖形判斷驗證.3、B【解析】

C、由二者第二次相遇的時間結(jié)合兩次相遇分別走過的路程,即可得出第一次相遇的時間,進(jìn)而得出C選項錯誤;A、當(dāng)時,出現(xiàn)拐點,顯然此時亮亮到達(dá)A地,利用速度路程時間可求出亮亮的速度及兩人的速度和,二者做差后可得出明明的速度,進(jìn)而得出A選項錯誤;B、根據(jù)第二次相遇時距離B地的距離明明的速度第二次相遇的時間、B兩地間的距離,即可求出第二次相遇時距離B地800米,B選項正確;D、觀察函數(shù)圖象,可知:出發(fā)35分鐘時亮亮到達(dá)A地,根據(jù)出發(fā)35分鐘時兩人間的距離明明的速度出發(fā)時間,即可求出出發(fā)35分鐘時兩人間的距離為2100米,D選項錯誤.【詳解】解:第一次相遇兩人共走了2800米,第二次相遇兩人共走了米,且二者速度不變,

出發(fā)20分時兩人第一次相遇,C選項錯誤;

亮亮的速度為米分,

兩人的速度和為米分,

明明的速度為米分,A選項錯誤;

第二次相遇時距離B地距離為米,B選項正確;

出發(fā)35分鐘時兩人間的距離為米,D選項錯誤.

故選:B.【點睛】本題考查了一次函數(shù)的應(yīng)用,觀察函數(shù)圖象,逐一分析四個選項的正誤是解題的關(guān)鍵.4、C【解析】

結(jié)合圓錐的平面展開圖的特征,側(cè)面展開是一個扇形,底面展開是一個圓.【詳解】解:圓錐的展開圖是由一個扇形和一個圓形組成的圖形.故選C.【點睛】考查了幾何體的展開圖,熟記常見立體圖形的展開圖的特征,是解決此類問題的關(guān)鍵.注意圓錐的平面展開圖是一個扇形和一個圓組成.5、C【解析】

首先根據(jù)AD∥BC,求出∠FED的度數(shù),然后根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等,則可知∠DEF=∠FED′,最后求得∠AED′的大?。驹斀狻拷猓骸逜D∥BC,∴∠EFB=∠FED=65°,由折疊的性質(zhì)知,∠DEF=∠FED′=65°,∴∠AED′=180°-2∠FED=50°,故選:C.【點睛】此題考查了長方形的性質(zhì)與折疊的性質(zhì).此題比較簡單,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.6、C【解析】

物體的俯視圖,即是從上面看物體得到的結(jié)果;根據(jù)三視圖的定義,從上面看物體可以看到是一個正六邊形,里面是一個沒有圓心的圓,由此可以確定答案.【詳解】從上面看是一個正六邊形,里面是一個沒有圓心的圓.故答案選C.【點睛】本題考查了幾何體的三視圖,解題的關(guān)鍵是熟練的掌握幾何體三視圖的定義.7、C【解析】

作輔助線,構(gòu)建全等三角形:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,證明△AGD≌△DHC≌△CMB,根據(jù)點D的坐標(biāo)表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐標(biāo),根據(jù)三角形面積公式可得結(jié)論.【詳解】解:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,設(shè)D(x,),∵四邊形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,∵AG=DH=﹣1﹣x=1,∴點E的縱坐標(biāo)為﹣4,當(dāng)y=﹣4時,x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,∴S△CEB=CE?BM=××4=7;故選C.【點睛】考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)、反比例函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會構(gòu)建方程解決問題.8、A【解析】

首先求出∠MPO=∠QON,利用AAS證明△PMO≌△ONQ,即可得到PM=ON,OM=QN,進(jìn)而求出Q點坐標(biāo).【詳解】作圖如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P點坐標(biāo)為(﹣4,2),∴Q點坐標(biāo)為(2,4),故選A.【點睛】此題主要考查了旋轉(zhuǎn)的性質(zhì),以及全等三角形的判定和性質(zhì),關(guān)鍵是掌握旋轉(zhuǎn)后對應(yīng)線段相等.9、C【解析】

直接利用概率的意義以及隨機(jī)事件的定義分別分析得出答案.【詳解】A、任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上,錯誤;B、天氣預(yù)報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨,錯誤;C、“籃球隊員在罰球線上投籃一次,投中”為隨機(jī)事件,正確;D、“a是實數(shù),|a|≥0”是必然事件,故此選項錯誤.故選C.【點睛】此題主要考查了概率的意義以及隨機(jī)事件的定義,正確把握相關(guān)定義是解題關(guān)鍵.10、D【解析】

解:如圖:利用頂點式及取值范圍,可畫出函數(shù)圖象會發(fā)現(xiàn):當(dāng)x=3時,y=k成立的x值恰好有三個.故選:D.二、填空題(共7小題,每小題3分,滿分21分)11、3【解析】

根據(jù)拋物線與x軸只有一個公共交點,則判別式等于0,據(jù)此即可求解.【詳解】∵拋物線y=3x2﹣6x+a與x軸只有一個公共點,∴判別式Δ=36-12a=0,解得:a=3,故答案為3【點睛】本題考查了二次函數(shù)圖象與x軸的公共點的個數(shù)的判定方法,如果△>0,則拋物線與x軸有兩個不同的交點;如果△=0,與x軸有一個交點;如果△<0,與x軸無交點.12、y=x﹣1【解析】分析:根據(jù)互相平行的兩直線解析式的k值相等設(shè)出一次函數(shù)的解析式,再把點(﹣2,﹣4)的坐標(biāo)代入解析式求解即可.詳解:∵一次函數(shù)的圖象與直線y=x+1平行,∴設(shè)一次函數(shù)的解析式為y=x+b.∵一次函數(shù)經(jīng)過點(﹣2,﹣4),∴×(﹣2)+b=﹣4,解得:b=﹣1,所以這個一次函數(shù)的表達(dá)式是:y=x﹣1.故答案為y=x﹣1.點睛:本題考查了兩直線平行的問題,熟記平行直線的解析式的k值相等設(shè)出一次函數(shù)解析式是解題的關(guān)鍵.13、【解析】

認(rèn)真審題,根據(jù)垂線段最短得出PM⊥AB時線段PM最短,分別求出PB、OB、OA、AB的長度,利用△PBM∽△ABO,即可求出本題的答案【詳解】解:如圖,過點P作PM⊥AB,則:∠PMB=90°,當(dāng)PM⊥AB時,PM最短,因為直線y=x﹣3與x軸、y軸分別交于點A,B,可得點A的坐標(biāo)為(4,0),點B的坐標(biāo)為(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴,即:,所以可得:PM=.14、【解析】

利用勾股定理求出AB,再證明OC=OA=OD,推出∠OCB=∠ODC,可得tan∠OCB=tan∠ODC=,由此即可解決問題.【詳解】在Rt△ABC中,∵AC=4,BC=3,∠ACB=90°,∴AB==5,∵四邊形ABDE是菱形,∴AB=BD=5,OA=OD,∴OC=OA=OD,∴∠OCB=∠ODC,∴tan∠OCB=tan∠ODC==,故答案為.【點睛】本題考查菱形的性質(zhì)、勾股定理、直角三角形斜邊中線的性質(zhì)、銳角三角函數(shù)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.15、或2【解析】

由折疊性質(zhì)可知B’F=BF,△B’FC與△ABC相似,有兩種情況,分別對兩種情況進(jìn)行討論,設(shè)出B’F=BF=x,列出比例式方程解方程即可得到結(jié)果.【詳解】由折疊性質(zhì)可知B’F=BF,設(shè)B’F=BF=x,故CF=4-x當(dāng)△B’FC∽△ABC,有,得到方程,解得x=,故BF=;當(dāng)△FB’C∽△ABC,有,得到方程,解得x=2,故BF=2;綜上BF的長度可以為或2.【點睛】本題主要考查相似三角形性質(zhì),解題關(guān)鍵在于能夠?qū)蓚€相似三角形進(jìn)行分類討論.16、π.【解析】

如圖,連接OE,利用切線的性質(zhì)得OD=3,OE⊥BC,易得四邊形OECD為正方形,先利用扇形面積公式,利用S正方形OECD-S扇形EOD計算由弧DE、線段EC、CD所圍成的面積,然后利用三角形的面積減去剛才計算的面積即可得到陰影部分的面積.【詳解】連接OE,如圖,∵以AD為直徑的半圓O與BC相切于點E,∴OD=CD=3,OE⊥BC,∴四邊形OECD為正方形,∴由弧DE、線段EC、CD所圍成的面積=S正方形OECD﹣S扇形EOD=32﹣,∴陰影部分的面積,故答案為π.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了矩形的性質(zhì)和扇形的面積公式.17、2【解析】試題分析:BE=AB-AE=2.設(shè)AH=x,則DH=AD﹣AH=2﹣x,在Rt△AEH中,∠EAH=90°,AE=4,AH=x,EH=DH=2﹣x,∴EH2=AE2+AH2,即(2﹣x)2=42+x2,解得:x=1.∴AH=1,EH=5.∴C△AEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴.∴C△EBF==C△HAE=2.考點:1折疊問題;2勾股定理;1相似三角形.三、解答題(共7小題,滿分69分)18、,當(dāng)x=0時,原式=(或:當(dāng)x=-1時,原式=).【解析】

先根據(jù)分式混合運算的法則把原式進(jìn)行化簡,再選取合適的x的值代入進(jìn)行計算即可.【詳解】解:原式=×=.x滿足﹣1≤x≤1且為整數(shù),若使分式有意義,x只能取0,﹣1.當(dāng)x=0時,原式=﹣(或:當(dāng)x=﹣1時,原式=).【點睛】本題考查分式的化簡求值,化簡的過程中要注意運算順序和分式的化簡.化簡的最后結(jié)果分子、分母要進(jìn)行約分,注意運算的結(jié)果要化成最簡分式或整式.19、(1)m=﹣1;y=﹣3x﹣1;(2)P1(5,0),P2(,0).【解析】

(1)將A代入反比例函數(shù)中求出m的值,即可求出直線解析式,(2)聯(lián)立方程組求出B的坐標(biāo),理由過兩點之間距離公式求出AB的長,求出P點坐標(biāo),表示出BP長即可解題.【詳解】解:(1)∵點A(m,2)在雙曲線上,∴m=﹣1,∴A(﹣1,2),直線y=kx﹣1,∵點A(﹣1,2)在直線y=kx﹣1上,∴y=﹣3x﹣1.(2),解得或,∴B(,﹣3),∴AB==,設(shè)P(n,0),則有(n﹣)2+32=解得n=5或,∴P1(5,0),P2(,0).【點睛】本題考查了一次函數(shù)和反比例函數(shù)的交點問題,中等難度,聯(lián)立方程組,會用兩點之間距離公式是解題關(guān)鍵.20、(2)證明見試題解析;(2).【解析】

(2)過點O作OM⊥AB于M,證明OM=圓的半徑OD即可;(2)過點O作ON⊥BE,垂足是N,連接OF,得到四邊形OMBN是矩形,在直角△OBM中利用三角函數(shù)求得OM和BM的長,進(jìn)而求得BN和ON的長,在直角△ONF中利用勾股定理求得NF,則BF即可求解.【詳解】解:(2)過點O作OM⊥AB,垂足是M.∵⊙O與AC相切于點D,∴OD⊥AC,∴∠ADO=∠AMO=90°.∵△ABC是等邊三角形,∴∠DAO=∠MAO,∴OM=OD,∴AB與⊙O相切;(2)過點O作ON⊥BE,垂足是N,連接OF.∵O是BC的中點,∴OB=2.在直角△OBM中,∠MBO=60°,∴∠MOB=30°,BM=OB=2,OM=BM=,∵BE⊥AB,∴四邊形OMBN是矩形,∴ON=BM=2,BN=OM=.∵OF=OM=,由勾股定理得NF=.∴BF=BN+NF=.考點:2.切線的判定與性質(zhì);2.勾股定理;3.解直角三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論