江蘇省蘇州市常熟市2025屆九上數(shù)學期末監(jiān)測試題含解析_第1頁
江蘇省蘇州市常熟市2025屆九上數(shù)學期末監(jiān)測試題含解析_第2頁
江蘇省蘇州市常熟市2025屆九上數(shù)學期末監(jiān)測試題含解析_第3頁
江蘇省蘇州市常熟市2025屆九上數(shù)學期末監(jiān)測試題含解析_第4頁
江蘇省蘇州市常熟市2025屆九上數(shù)學期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如圖,⊙O的弦AB=16,OM⊥AB于M,且OM=6,則⊙O的半徑等于A.8 B.6 C.10 D.202.某果園2017年水果產量為100噸,2019年水果產量為144噸,則該果園水果產量的年平均增長率為()A.10% B.20% C.25% D.40%3.拋物線y=-x2+3x-5與坐標軸的交點的個數(shù)是()A.0個 B.1個 C.2個 D.3個4.若雙曲線y=在每一個象限內,y隨x的增大而減小,則k的取值范圍是()A.k<3 B.k≥3 C.k>3 D.k≠35.一個幾何體由大小相同的小方塊搭成,從上面看到的幾何體的形狀圖如圖所示,其中小正方形中的數(shù)字表示在該位置的小立方塊的個數(shù),則從正面看到幾何體的形狀圖是()A. B. C. D.6.如圖,△ABC是等腰直角三角形,BC是斜邊,將△ABP繞點A逆時針旋轉后,能與△ACP′重合,如果AP=3cm,那么PP′的長為()A. B. C. D.7.如圖,△ABC內接于⊙O,若∠A=α,則∠OBC等于()A.180°﹣2α B.2α C.90°+α D.90°﹣α8.正五邊形的每個外角度數(shù)為()A. B. C. D.9.若∽,,,,則的長為()A.4 B.5 C.6 D.710.下列函數(shù)是關于的反比例函數(shù)的是()A. B. C. D.11.反比例函數(shù),下列說法不正確的是()A.圖象經過點(1,﹣1) B.圖象位于第二、四象限C.圖象關于直線y=x對稱 D.y隨x的增大而增大12.如圖,在的正方形網(wǎng)格中,有三個小正方形已經涂成灰色,若再任意涂灰2個白色小正方形(每個白色小正方形被涂成灰色的可能性相同),使新構成灰色部分的圖形是軸對稱圖形的概率是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,點A為函數(shù)y=(x>0)圖象上一點,連接OA,交函數(shù)y=(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△ABC的面積為______.14.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中x與y的部分對應值如下表x-1013y-1353那么當x=4時,y的值為___________.15.如圖,矩形ABCD中,AB=3cm,AD=6cm,點E為AB邊上的任意一點,四邊形EFGB也是矩形,且EF=2BE,則S△AFC=__________cm2.16.如圖,在平面直角坐標系中,點的坐標分別是,,若二次函數(shù)的圖象過兩點,且該函數(shù)圖象的頂點為,其中,是整數(shù),且,,則的值為__________.17.如圖,△OAB的頂點A的坐標為(3,),B的坐標為(4,0);把△OAB沿x軸向右平移得到△CDE,如果D的坐標為(6,),那么OE的長為_____.18.若關于x的一元二次方程的一個根是0,則另一個根是________.三、解答題(共78分)19.(8分)如圖,拋物線y=ax2+bx+c經過△ABC的三個頂點,與y軸相交于(0,),點A坐標為(-1,2),點B是點A關于y軸的對稱點,點C在x軸的正半軸上.(1)求該拋物線的函數(shù)解析式;(2)點F為線段AC上一動點,過點F作FE⊥x軸,F(xiàn)G⊥y軸,垂足分別為點E,G,當四邊形OEFG為正方形時,求出點F的坐標;(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當點E和點C重合時停止運動,設平移的距離為t,正方形的邊EF與AC交于點M,DG所在的直線與AC交于點N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,請說明理由.20.(8分)如圖,在菱形中,點是邊上一點,延長至點,使,連接求證:.21.(8分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,交BC于點D,交CA的延長線于點E,連接AD,DE.(1)求證:D是BC的中點(2)若DE=3,AD=1,求⊙O的半徑.22.(10分)如圖所示,在平面直角坐標系中,拋物線的頂點坐標為,并與軸交于點,點是對稱軸與軸的交點.(1)求拋物線的解析式;(2)如圖①所示,是拋物線上的一個動點,且位于第一象限,連結BP、AP,求的面積的最大值;(3)如圖②所示,在對稱軸的右側作交拋物線于點,求出點的坐標;并探究:在軸上是否存在點,使?若存在,求點的坐標;若不存在,請說明理由.23.(10分)如圖,AD是⊙O的直徑,AB為⊙O的弦,OP⊥AD,OP與AB的延長線交于點P,點C在OP上,滿足∠CBP=∠ADB.(1)求證:BC是⊙O的切線;(2)若OA=2,AB=1,求線段BP的長.24.(10分)如圖,直徑為AB的⊙O交的兩條直角邊BC,CD于點E,F(xiàn),且,連接BF.(1)求證CD為⊙O的切線;(2)當CF=1且∠D=30°時,求⊙O的半徑.25.(12分)如圖,△ABC中,點E在BC邊上,AE=AB,將線段AC繞A點逆時針旋轉到AF的位置,使得∠CAF=∠BAE,連接EF,EF與AC交于點G.求證:EF=BC.26.閱讀下列材料:小輝和小樂一起在學校寄宿三年了,畢業(yè)之際,他們想合理分配共同擁有的三件“財產”:一個電子詞典、一臺迷你唱機、一套珍藏版小說.他們本著“在尊重各自的價值偏好基礎上進行等值均分”的原則,設計了分配方案,步驟如下(相應的數(shù)額如表二所示):①每人各自定出每件物品在心中所估計的價值;②計算每人所有物品估價總值和均分值(均分:按總人數(shù)均分各自估價總值);③每件物品歸估價較高者所有;④計算差額(差額:每人所得物品的估價總值與均分值之差);⑤小樂拿225元給小輝,仍“剩下”的300元每人均分.依此方案,兩人分配的結果是:小輝拿到了珍藏版小說和375元錢,小樂拿到的電子詞典和迷你唱機,但要付出375元錢.(1)甲、乙、丙三人分配A,B,C三件物品,三人的估價如表三所示,依照上述方案,請直接寫出分配結果;(2)小紅和小麗分配D,E兩件物品,兩人的估價如表四所示(其中0<m-n<15).按照上述方案的前四步操作后,接下來,依據(jù)“在尊重各自的價值偏好基礎上進行等值均分”的原則,該怎么分配較為合理?請完成表四,并寫出分配結果.(說明:本題表格中的數(shù)值的單位均為“元”)

參考答案一、選擇題(每題4分,共48分)1、C【分析】連接OA,即可證得△OMA是直角三角形,根據(jù)垂徑定理即可求得AM,根據(jù)勾股定理即可求得OA的長,即⊙O的半徑.【詳解】連接OA,∵M是AB的中點,∴OM⊥AB,且AM=8,在Rt△OAM中,OA===1.故選C.本題主要考查了垂徑定理,以及勾股定理,根據(jù)垂徑定理求得AM的長,證明△OAM是直角三角形是解題的關鍵.2、B【分析】2019年水果產量=2017年水果產量,列出方程即可.【詳解】解:根據(jù)題意得,解得(舍去)故答案為20%,選B.本題考查了一元二次方程的應用.3、B【分析】根據(jù)△=b2-4ac與0的大小關系即可判斷出二次函數(shù)y=-x2+3x-5的圖象與x軸交點的個數(shù)再加上和y軸的一個交點即可【詳解】解:對于拋物線y=-x2+3x-5,

∵△=9-20=-11<0,

∴拋物線與x軸沒有交點,與y軸有一個交點,

∴拋物線y=-x2+3x-5與坐標軸交點個數(shù)為1個,故選:B.本題考查拋物線與x軸的交點,解題的關鍵是記?。骸?b2-4ac決定拋物線與x軸的交點個數(shù).△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.4、C【分析】根據(jù)反比例函數(shù)的性質可解.【詳解】解:∵雙曲線在每一個象限內,y隨x的增大而減小,∴k-3>0∴k>3故選:C.本題考查了反比例函數(shù)的性質,掌握反比例函數(shù),當k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內y隨x的增大而減?。划攌<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大.5、D【解析】試題分析:根據(jù)所給出的圖形和數(shù)字可得:主視圖有3列,每列小正方形數(shù)目分別為3,2,3,則符合題意的是D;故選D.考點:1.由三視圖判斷幾何體;2.作圖-三視圖.6、D【分析】由題意易證,則有,進而可得,最后根據(jù)勾股定理可求解.【詳解】解:∵△ABC是等腰直角三角形,∴∠BAC=90°,AB=AC,∵將△ABP繞點A逆時針旋轉后,能與△ACP′重合,∴,∵AP=3cm,∴,∵,∴,即,∴是等腰直角三角形,∴;故選D.本題主要考查旋轉的性質及等腰直角三角形的性質與判定,熟練掌握旋轉的性質及等腰直角三角形的性質與判定是解題的關鍵.7、D【解析】連接OC,則有∠BOC=2∠A=2α,∵OB=OC,∴∠OBC=∠OCB,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2α=180°,∴∠OBC=90°-α,故選D.8、B【解析】利用多邊形的外角性質計算即可求出值.【詳解】360°÷5=72°,故選:B.此題考查了多邊形的內角與外角,熟練掌握多邊形的外角性質是解本題的關鍵.9、C【分析】利用相似三角形的性質,列出比例式即可解決問題.【詳解】解:∵△ABC∽△DEF,,,,∴,∴,∴EF=6.故選C.本題考查相似三角形的性質,解題的關鍵是熟練掌握相似三角形的對應邊成比例,屬于中考基礎題.10、B【分析】根據(jù)反比例函數(shù)的定義進行判斷.【詳解】A.,是一次函數(shù),此選項錯誤;B.,是反比例函數(shù),此選項正確;C.,是二次函數(shù),此選項錯誤;D.,是y關于(x+1)的反比例函數(shù),此選項錯誤.故選:B本題考查了反比例函數(shù)的定義,解題的關鍵是掌握反比例函數(shù)的定義.11、D【分析】反比例函數(shù)y=(k≠0)的圖象k>0時位于第一、三象限,在每個象限內,y隨x的增大而減小;k<0時位于第二、四象限,在每個象限內,y隨x的增大而增大;在不同象限內,y隨x的增大而增大,根據(jù)這個性質選擇則可.【詳解】A、圖象經過點(1,﹣1),正確;B、圖象位于第二、四象限,故正確;C、雙曲線關于直線y=x成軸對稱,正確;D、在每個象限內,y隨x的增大而增大,故錯誤,故選:D.此題考查反比例函數(shù)的性質,熟記性質并運用解題是關鍵.12、C【分析】根據(jù)題目意思我們可以得出總共有15種可能,而能構成軸對稱圖形的可能有4種,然后根據(jù)概率公式可計算出新構成的黑色部分的圖形是軸對稱圖形的概率.【詳解】解:如圖所示可以涂成黑色的組合有:1,2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6;一共有15種可能構成黑色部分的圖形是軸對稱圖形的:1,4;3,6;2,3;4,5;∴構成黑色部分的圖形是軸對稱圖形的概率:故選:C.此題主要考查的是利用軸對稱設計圖案,正確得出所有組合是解題的關鍵.二、填空題(每題4分,共24分)13、6.【分析】作輔助線,根據(jù)反比例函數(shù)關系式得:S△AOD=,S△BOE=,再證明△BOE∽△AOD,由性質得OB與OA的比,由同高兩三角形面積的比等于對應底邊的比可以得出結論.【詳解】如圖,分別作BE⊥x軸,AD⊥x軸,垂足分別為點E、D,∴BE∥AD,

∴△BOE∽△AOD,

∴,

∵OA=AC,

∴OD=DC,

∴S△AOD=S△ADC=S△AOC,

∵點A為函數(shù)y=(x>0)的圖象上一點,

∴S△AOD=,

同理得:S△BOE=,

∴,

∴,

∴,

∴,

∴,

故答案為6.14、-1【分析】將表中數(shù)值選其中三組代入解析式得方程組,解方程組得到函數(shù)解析式,再把x=4代入求值即可.【詳解】解:將表中數(shù)值選其中三組代入解析式得:解得:所以解析式為:當x=4時,故答案為:-1本題考查了待定系數(shù)法求二次函數(shù)的解析式,根據(jù)表中數(shù)據(jù)求出二次函數(shù)解析式是解題的關鍵.15、9【解析】連接BF,過B作BO⊥AC于O,過點F作FM⊥AC于M.Rt△ABC中,AB=3,BC=6,.∵∠CAB=∠BAC,∠AOB=∠ABC,∴△AOB∽△ABC,,.∵EF=BG=2BE=2GF,BC=2AB,∴Rt△BGF和Rt△ABC中,,∴Rt△BGF∽Rt△ABC,∴∠FBG=∠ACB,∴AC∥BF,∴S△AFC=AC×FM=9.△ACF中,AC的長度不變,所以以AC為底邊求面積.因為兩矩形相似,所以易證AC∥BF,從而△ACF的高可用BO表示.在△ABC中求BO的長度,即可計算△ACF的面積.16、,【分析】先將A,B兩點的坐標代入,消去c可得出b=1-7a,c=10a,得出xM=-=,yM=.方法一:分以下兩種情況:①a>0,畫出示意圖,可得出yM=0,1或2,進而求出a的值;②a<0時,根據(jù)示意圖可得,yM=5,6或7,進而求出a的值;方法二:根據(jù)題意可知或7①,或7②,由①求出a的值,代入②中驗證取舍從而可得出a的值.【詳解】解:將A,B兩點的坐標代入得,,②-①得,3=21a+3b,∴b=1-7a,c=10a.∴原解析式可以化為:y=ax2+(1-7a)x+10a.∴xM=-=,yM=,方法一:①當a>0時,開口向上,∵二次函數(shù)經過A,B兩點,且頂點中,x,y均為整數(shù),且,,畫出示意圖如圖①,可得0≤yM≤2,∴yM=0,1或2,當yM=0時,解得a=,不滿足xM為整數(shù)的條件,舍去;當yM=1時,解得a=1(a=不符合條件,舍去);當yM=2時,解得a=,符合條件.②a<0時,開口向下,畫出示意圖如圖②,根據(jù)題中條件可得,5≤yM≤7,只有當yM=5,a=-時,當yM=6,a=-1時符合條件.綜上所述,a的值為,.方法二:根據(jù)題意可得或7;或7③,∴當時,解得a=,不符合③,舍去;當時,解得a=,不符合③,舍去;當時,解得a=,符合③中條件;當時,解得a=1,符合③中條件;當時,解得a=-1,符合③中條件;當時,解得a=-,符合③中條件;當時,解得a=-,不符合③舍去;當時,解得a=-,不符合③舍去;綜上可知a的值為:,.故答案為:,本題主要考查二次函數(shù)的解析式、頂點坐標以及函數(shù)圖像的整數(shù)點問題,掌握基本概念與性質是解題的關鍵.17、7【分析】根據(jù)平移的性質得到AD=BE=6﹣3=3,由B的坐標為(4,0),得到OB=4,根據(jù)OE=OB+BE即可得答案.【詳解】∵點A的坐標為(3,),點D的坐標為(6,),把△OAB沿x軸向右平移得到△CDE,∴AD=BE=6﹣3=3,∵B的坐標為(4,0),∴OB=4,∴OE=OB+BE=7,故答案為:7本題考查圖形平移的性質,平移不改變圖形的形狀和大小;圖形經過平移,對應線段相等,對應角相等,對應點所連的線段相等.18、1【解析】設x1,x2是關于x的一元二次方程x2?x+k=0的兩個根,∵關于x的一元二次方程x2?x+k=0的一個根是0,∴由韋達定理,得x1+x2=1,即x2=1,即方程的另一個根是1.故答案為1.三、解答題(共78分)19、(1)y=﹣x2+;(2)(1,1);(3)當△DMN是等腰三角形時,t的值為,3﹣或1.【解析】試題分析:(1)易得拋物線的頂點為(0,),然后只需運用待定系數(shù)法,就可求出拋物線的函數(shù)關系表達式;(2)①當點F在第一象限時,如圖1,可求出點C的坐標,直線AC的解析式,設正方形OEFG的邊長為p,則F(p,p),代入直線AC的解析式,就可求出點F的坐標;②當點F在第二象限時,同理可求出點F的坐標,此時點F不在線段AC上,故舍去;(3)過點M作MH⊥DN于H,如圖2,由題可得0≤t≤2.然后只需用t的式子表示DN、DM2、MN2,分三種情況(①DN=DM,②ND=NM,③MN=MD)討論就可解決問題.試題解析:(1)∵點B是點A關于y軸的對稱點,∴拋物線的對稱軸為y軸,∴拋物線的頂點為(0,),故拋物線的解析式可設為y=ax2+.∵A(﹣1,2)在拋物線y=ax2+上,∴a+=2,解得a=﹣,∴拋物線的函數(shù)關系表達式為y=﹣x2+;(2)①當點F在第一象限時,如圖1,令y=0得,﹣x2+=0,解得:x1=3,x2=﹣3,∴點C的坐標為(3,0).設直線AC的解析式為y=mx+n,則有,解得,∴直線AC的解析式為y=﹣x+.設正方形OEFG的邊長為p,則F(p,p).∵點F(p,p)在直線y=﹣x+上,∴﹣p+=p,解得p=1,∴點F的坐標為(1,1).②當點F在第二象限時,同理可得:點F的坐標為(﹣3,3),此時點F不在線段AC上,故舍去.綜上所述:點F的坐標為(1,1);(3)過點M作MH⊥DN于H,如圖2,則OD=t,OE=t+1.∵點E和點C重合時停止運動,∴0≤t≤2.當x=t時,y=﹣t+,則N(t,﹣t+),DN=﹣t+.當x=t+1時,y=﹣(t+1)+=﹣t+1,則M(t+1,﹣t+1),ME=﹣t+1.在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,∴MN2=12+()2=.①當DN=DM時,(﹣t+)2=t2﹣t+2,解得t=;②當ND=NM時,﹣t+=,解得t=3﹣;③當MN=MD時,=t2﹣t+2,解得t1=1,t2=3.∵0≤t≤2,∴t=1.綜上所述:當△DMN是等腰三角形時,t的值為,3﹣或1.考點:二次函數(shù)綜合題.20、見解析.【分析】根據(jù)菱形的性質得出∠A=∠CBF,進而判斷出△ABE≌△BCF,即可得出答案.【詳解】證明:∵四邊形是菱形∴∴在和中∴∴BE=CF本題考查的是菱形和全等三角形,比較簡單,需要熟練掌握相關基礎知識.21、(1)證明見解析;(2)【分析】(1)根據(jù)圓周角定理、等腰三角形的三線合一的性質即可證得結論;(2)根據(jù)圓周角定理及等腰三角形的判定得到DE=BD=3,再根據(jù)勾股定理求出AB,即可得到半徑的長.【詳解】(1)∵AB是⊙O直徑∴∠ADB=90°,在△ABC中,AB=AC,∴DB=DC,即點D是BC的中點;(2)∵AB=AC,∴∠B=∠C,又∠B=∠E,∴∠C=∠E,∴DE=DC,∵DC=BD,∴DE=BD=3,∵AD=1,又∠ADB=90°,∴AB=,∴⊙O的半徑=.此題考查圓周角定理,等腰三角形的三線合一的性質及等角對等邊的判定,勾股定理.22、(1);(2)當時,最大值為;(3)存在,點坐標為,理由見解析【分析】(1)利用待定系數(shù)法可求出二次函數(shù)的解析式;(2)求三角形面積的最值,先求出三角形面積的函數(shù)式.從圖形上看S△PAB=S△BPO+S△APO-S△AOB,設P求出關于n的函數(shù)式,從而求S△PAB的最大值.(3)求點D的坐標,設D,過D做DG垂直于AC于G,構造直角三角形,利用勾股定理或三角函數(shù)值來求t的值即得D的坐標;探究在y軸上是否存在點,使?根據(jù)以上條件和結論可知∠CAD=120°,是∠CQD的2倍,聯(lián)想到同弧所對的圓周角和圓心角,所以以A為圓心,AO長為半徑做圓交y軸與點Q,若能求出這樣的點,就存在Q點.【詳解】解:拋物線頂點為可設拋物線解析式為將代入得拋物線,即連接,設點坐標為當時,最大值為存在,設點D的坐標為過作對稱軸的垂線,垂足為,則在中有化簡得(舍去),∴點D(,-3)連接,在中在以為圓心,為半徑的圓與軸的交點上此時設點為(0,m),AQ為的半徑則AQ2=OQ2+OA2,62=m2+32即∴綜上所述,點坐標為故存在點Q,且這樣的點有兩個點.(1)本題考查了利用待定系數(shù)法求二次函數(shù)解析式,根據(jù)已知條件選用頂點式較方便;(2)本題是三角形面積的最值問題,解決這個問題應該在分析圖形的基礎上,引出自變量,再根據(jù)圖形的特征列出面積的計算公式,用含自變量的代數(shù)式表示面積的函數(shù)式,然后求出最值.(3)先求拋物線上點的坐標問題及符合條件的點是否存在.一般先假設這個點存在,再根據(jù)已知條件求出這個點.23、(1)見解析;(2)BP=1.【分析】(1)連接OB,如圖,根據(jù)圓周角定理得到∠ABD=90°,再根據(jù)等腰三角形的性質和已知條件證出∠OBC=90°,即可得出結論;(2)證明△AOP∽△ABD,然后利用相似三角形的對應邊成比例求BP的長.【詳解】(1)證明:連接OB,如圖,∵AD是⊙O的直徑,∴∠ABD=90°,∴∠A+∠ADB=90°,∵OA=OB,∴∠A=∠OBA,∵∠CBP=∠ADB,∴∠OBA+∠CBP=90°,∴∠OBC=180°﹣90°=90°,∴BC⊥OB,∴BC是⊙O的切線;(2)解:∵OA=2,∴AD=2OA=4,∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∵∠A=∠A,∴△AOP∽△ABD,∴=,即=,解得:BP=1.本題考查了切線的判定、圓周角定理、等腰三角形的性質、相似三角形的判定與性質等知識;熟練掌握圓周角定理和切線的判定是解題的關鍵.24、(1)證明見解析;(2).【分析】(1)連接OF,只要證明OF∥BC,即可推

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論