2024-2025學年四川省西昌市航天學校九上數(shù)學期末監(jiān)測試題含解析_第1頁
2024-2025學年四川省西昌市航天學校九上數(shù)學期末監(jiān)測試題含解析_第2頁
2024-2025學年四川省西昌市航天學校九上數(shù)學期末監(jiān)測試題含解析_第3頁
2024-2025學年四川省西昌市航天學校九上數(shù)學期末監(jiān)測試題含解析_第4頁
2024-2025學年四川省西昌市航天學校九上數(shù)學期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.如圖,在四邊形ABCD中,,,,AC與BD交于點E,,則的值是()A. B. C. D.2.在以下綠色食品、回收、節(jié)能、節(jié)水四個標志中,是軸對稱圖形的是()A. B. C. D.3.如圖,四邊形是的內(nèi)接四邊形,與的延長線交于點,與的延長線交于點,,,則的度數(shù)為()A.38° B.48° C.58° D.68°4.如圖,如果從半徑為9cm的圓形紙片剪去圓周的一個扇形,將留下的扇形圍成一個圓錐(接縫處不重疊),那么這個圓錐的高為A.6cm B.cm C.8cm D.cm5.已知⊙O的半徑為1,點P到圓心的距離為d,若關于x的方程x-2x+d=0有實數(shù)根,則點P()A.在⊙O的內(nèi)部 B.在⊙O的外部 C.在⊙O上 D.在⊙O上或⊙O內(nèi)部6.如圖,是的直徑,、是弧(異于、)上兩點,是弧上一動點,的角平分線交于點,的平分線交于點.當點從點運動到點時,則、兩點的運動路徑長的比是()A. B. C. D.7.在同一直角坐標系中,函數(shù)y=kx﹣k與y=(k≠0)的圖象大致是()A. B.C. D.8.如圖,AB是⊙O的弦,∠BAC=30°,BC=2,則⊙O的直徑等于()A.2 B.3 C.4 D.69.把Rt△ABC各邊的長度都擴大3倍得到Rt△A′B′C′,對應銳角A,A′的正弦值的關系為()A.sinA=3sinA′B.sinA=sinA′C.3sinA=sinA′D.不能確定10.五張完全相同的卡片上,分別寫有數(shù)字1,2,3,4,5,現(xiàn)從中隨機抽取一張,抽到的卡片上所寫數(shù)字小于3的概率是()A. B. C. D.11.如圖,點的坐標是,是等邊角形,點在第一象限,若反比例函數(shù)的圖象經(jīng)過點,則的值是()A. B. C. D.12.拋物線y=(x+2)2﹣2的頂點坐標是()A.(2,﹣2) B.(2,2) C.(﹣2,2) D.(﹣2,﹣2)二、填空題(每題4分,共24分)13.如圖,在中,,,為邊上的一點,且,若的面積為,則的面積為__________.14.在平面直角坐標系中,點(3,-4)關于原點對稱的點的坐標是____________.15.如圖,在△ABC中,∠BAC=90°,∠B=60°,AD⊥BC于點D,則△ABD與△ADC的面積比為________.16.在比例尺為1:40000的地圖上,某條道路的長為7cm,則該道路的實際長度是_____km.17.如圖是某幾何體的三視圖及相關數(shù)據(jù),則該幾何體的側面積是_____.18.如果,那么的值為______.三、解答題(共78分)19.(8分)如圖,已知A(-4,2)、B(n,-4)是一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個交點.(1)求此反比例函數(shù)和一次函數(shù)的解析式;(2)求△AOB的面積;20.(8分)請畫出下面幾何體的三視圖21.(8分)如圖,在四邊形ABCD中,AD∥BC,AD=2BC,E為AD的中點,連接BD,BE,∠ABD=90°(1)求證:四邊形BCDE為菱形.(2)連接AC,若AC⊥BE,BC=2,求BD的長.22.(10分)如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)()的圖象交于,兩點,已知點坐標為.(1)求一次函數(shù)和反比例函數(shù)的解析式;(2)連接,,求的面積.23.(10分)如圖,AC為⊙O的直徑,B為⊙O上一點,∠ACB=30°,延長CB至點D,使得CB=BD,過點D作DE⊥AC,垂足E在CA的延長線上,連接BE.(1)求證:BE是⊙O的切線;(2)當BE=3時,求圖中陰影部分的面積.24.(10分)在中,,是邊上的中線,點在射線上.猜想:如圖①,點在邊上,,與相交于點,過點作,交的延長線于點,則的值為.探究:如圖②,點在的延長線上,與的延長線交于點,,求的值.應用:在探究的條件下,若,,則.25.(12分)如圖,已知是的直徑,弦于點,是的外角的平分線.求證:是的切線.26.已知,直線與拋物線相交于、兩點,且的坐標是(1)求,的值;(2)拋物線的表達式及其對稱軸和頂點坐標.

參考答案一、選擇題(每題4分,共48分)1、C【分析】證明,得出,證出,得出,因此,在中,由三角函數(shù)定義即可得出答案.【詳解】∵,,∴,,∵,∴,∴,∴,∴,∴,∵,∴,∴,∴,在中,;故選:C.本題考查了平行線的性質(zhì)、相似三角形的判定與性質(zhì)以及解直角三角形的應用等知識;熟練掌握解直角三角形,證明三角形相似是解題的關鍵.2、D【分析】根據(jù)軸對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.【詳解】A、不是軸對稱圖形,故A不符合題意;B、不是軸對稱圖形,故B不符合題意;C、不是軸對稱圖形,故C不符合題意;D、是軸對稱圖形,故D符合題意.故選D.本題主要考查軸對稱圖形的知識點.確定軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.3、A【分析】根據(jù)三角形的外角性質(zhì)求出,然后根據(jù)圓內(nèi)接四邊形的性質(zhì)和三角形內(nèi)角和定理計算即可.【詳解】解:=故選A本題考查了圓周角定理及其推論.4、B【解析】試題分析:∵從半徑為9cm的圓形紙片上剪去圓周的一個扇形,∴留下的扇形的弧長==12π,根據(jù)底面圓的周長等于扇形弧長,∴圓錐的底面半徑r==6cm,∴圓錐的高為=3cm故選B.考點:圓錐的計算.5、D【分析】先根據(jù)條件x

2

-2x+d=0有實根得出判別式大于或等于0,求出d的范圍,進而得出d與r的數(shù)量關系,即可判斷點P和⊙O的關系..【詳解】解:∵關于x的方程x

2

-2x+d=0有實根,∴根的判別式△=(-2)

2

-4×d≥0,解得d≤1,∵⊙O的半徑為r=1,∴d≤r∴點P在圓內(nèi)或在圓上.故選:D.本題考查了點和圓的位置關系,由點到圓心的距離和半徑的數(shù)量關系對點和圓的位置關系作出判斷是解答此題的重要途徑,即當d>r時,點在圓外,當d=r時,點在圓上,當d<r時,點在圓內(nèi).6、A【解析】連接BE,由題意可得點E是△ABC的內(nèi)心,由此可得∠AEB=135°,為定值,確定出點E的運動軌跡是是弓形AB上的圓弧,此圓弧所在圓的圓心在AB的中垂線上,根據(jù)題意過圓心O作直徑CD,則CD⊥AB,在CD的延長線上,作DF=DA,則可判定A、E、B、F四點共圓,繼而得出DE=DA=DF,點D為弓形AB所在圓的圓心,設⊙O的半徑為R,求出點C的運動路徑長為,DA=R,進而求出點E的運動路徑為弧AEB,弧長為,即可求得答案.【詳解】連結BE,∵點E是∠ACB與∠CAB的交點,∴點E是△ABC的內(nèi)心,∴BE平分∠ABC,∵AB為直徑,∴∠ACB=90°,∴∠AEB=180°-(∠CAB+∠CBA)=135°,為定值,,∴點E的軌跡是弓形AB上的圓弧,∴此圓弧的圓心一定在弦AB的中垂線上,∵,∴AD=BD,如下圖,過圓心O作直徑CD,則CD⊥AB,∠BDO=∠ADO=45°,在CD的延長線上,作DF=DA,則∠AFB=45°,即∠AFB+∠AEB=180°,∴A、E、B、F四點共圓,∴∠DAE=∠DEA=67.5°,∴DE=DA=DF,∴點D為弓形AB所在圓的圓心,設⊙O的半徑為R,則點C的運動路徑長為:,DA=R,點E的運動路徑為弧AEB,弧長為:,C、E兩點的運動路徑長比為:,故選A.本題考查了點的運動路徑,涉及了三角形的內(nèi)心,圓周角定理,四點共圓,弧長公式等,綜合性較強,正確分析出點E運動的路徑是解題的關鍵.7、B【分析】根據(jù)k的取值范圍,分別討論k>0和k<0時的情況,然后根據(jù)一次函數(shù)和反比例函數(shù)圖象的特點進行選擇正確答案.【詳解】解:①當k>0時,一次函數(shù)y=kx﹣k經(jīng)過一、三、四象限,反比例函數(shù)的的圖象經(jīng)過一、三象限,故B選項的圖象符合要求,②當k<0時,一次函數(shù)y=kx﹣k經(jīng)過一、二、四象限,反比例函數(shù)的的圖象經(jīng)過二、四象限,沒有符合條件的選項.故選:B.此題考查反比例函數(shù)的圖象問題;用到的知識點為:反比例函數(shù)與一次函數(shù)的k值相同,則兩個函數(shù)圖象必有交點;一次函數(shù)與y軸的交點與一次函數(shù)的常數(shù)項相關.8、C【分析】如圖,作直徑BD,連接CD,根據(jù)圓周角定理得到∠D=∠BAC=30°,∠BCD=90°,根據(jù)直角三角形的性質(zhì)解答.【詳解】如圖,作直徑BD,連接CD,∵∠BDC和∠BAC是所對的圓周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直徑,∠BCD是BD所對的圓周角,∴∠BCD=90°,∴BD=2BC=4,故選:C.本題考查圓周角定理,在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;半圓(或直徑)所對的圓周角是直角;90°圓周角所對的弦是直徑;熟練掌握圓周角定理是解題關鍵.9、B【解析】根據(jù)相似三角形的性質(zhì),可得∠A=∠A′,根據(jù)銳角三角函數(shù)的定義,可得答案.【詳解】解:由Rt△ABC各邊的長度都擴大3倍的Rt△A′B′C′,得

Rt△ABC∽Rt△A′B′C′,

∠A=∠A′,sinA=sinA′

故選:B.本題考查了銳角三角函數(shù)的定義,利用相似三角形的性質(zhì)得出∠A=∠A′是解題關鍵.10、B【分析】用小于3的卡片數(shù)除以卡片的總數(shù)量可得答案.【詳解】由題意可知一共有5種結果,其中數(shù)字小于3的結果有抽到1和2兩種,所以.故選:B.本題主要考查概率公式,解題的關鍵是掌握隨機事件A的概率P(A)=事件A可能出現(xiàn)的結果數(shù)÷所有可能出現(xiàn)的結果數(shù).11、D【分析】首先過點B作BC垂直O(jiān)A于C,根據(jù)AO=4,△ABO是等辺三角形,得出B點坐標,迸而求出k的值.【詳解】解:過點B作BC垂直O(jiān)A于C,

∵點A的坐標是(2,0)

,AO=4,

∵△ABO是等邊三角形∴OC=

2,BC=∴點B的坐標是(2,),把(2,)代入,得:k=xy=故選:D本題考查的是利用等邊三角形的性質(zhì)來確定反比例函數(shù)的k值.12、D【分析】根據(jù)二次函數(shù)的頂點式方程可以直接寫出其頂點坐標.【詳解】∵拋物線為y=(x+2)2﹣2,∴頂點坐標為(﹣2,﹣2).故選D.本題考查了二次函數(shù)的頂點坐標的求法,掌握二次函數(shù)的頂點式y(tǒng)=a(x﹣h)2+k是解題的關鍵.二、填空題(每題4分,共24分)13、1【分析】首先判定△ADC∽△BAC,然后得到相似比,根據(jù)面積比等于相似比的平方可求出△BAC的面積,減去△ADC的面積即為△ABD的面積.【詳解】∵∠CAD=∠B,∠C=∠C∴△ADC∽△BAC∴相似比則面積比∴∴故答案為:1.本題考查了相似三角形的判定與性質(zhì),熟記相似三角形的面積比等于相似比的平方是解題的關鍵.14、(-3,4)【詳解】在平面直角坐標系中,點(3,-4)關于原點對稱的點的坐標是(-3,4).故答案為(-3,4).本題考查關于原點對稱的點的坐標,兩個點關于原點對稱時,它們的坐標符號相反.15、1:1【分析】根據(jù)∠BAC=90°,可得∠BAD+∠CAD=90°,再根據(jù)垂直的定義得到∠ADB=∠CDA=90°,利用三角形的內(nèi)角和定理可得∠B+∠BAD=90°,根據(jù)同角的余角相等得到∠B=∠CAD,利用兩對對應角相等兩三角形相似得到△ABD∽△CAD,由tanB=tan60°=,再根據(jù)相似三角形的面積比等于相似比(對應邊的之比)的平方即可求出結果.【詳解】:∵∠BAC=90°,

∴∠BAD+∠CAD=90°,

又∵AD⊥BC,

∴∠ADB=∠CDA=90°,

∴∠B+∠BAD=90°,

∴∠B=∠CAD,又∠ADB=∠CDA=90°,

∴△ABD∽△CAD,

∴,

∵∠B=60°,

∴,

∴.

故答案為1:1.本題考查了相似三角形的判定與性質(zhì),熟練掌握相似比即為對應邊之比,周長比等于相似比,面積之比等于相似比的平方是解決問題的關鍵.16、2.1【解析】試題分析:設這條道路的實際長度為x,則:,解得x=210000cm=2.1km,∴這條道路的實際長度為2.1km.故答案為2.1.考點:比例線段.17、15π.【解析】試題分析:由三視圖可知這個幾何體是母線長為5,高為4的圓錐,∴a=2=6,∴底面半徑為3,∴側面積為:π×5×3=15π.考點:1.三視圖;2.圓錐的側面積.18、【分析】利用因式分解法求出的值,再根據(jù)可得最終結果.【詳解】解:原方程可化為:,解得:或,∵,∴.故答案為:.本題考查的知識點是解一元二次方程以及銳角三角函數(shù)的定義,熟記正弦的取值范圍是解此題的關鍵.三、解答題(共78分)19、(1)y=-;y=-x-2;(2)6【分析】(1)先把點A(-4,2)代入,求得“m”的值得到反比例函數(shù)的解析式,再把點B(n,-4)代入所得的反比例函數(shù)的解析式中求得“n”的值,從而可得點B的坐標,最后把A、B的坐標代入中列方程組解得“k、b”的值即可得到一次函數(shù)的解析式;(2)設直線AB和x軸交于點C,先求出點C的坐標,再由S△AOB=S△AOC+S△BOC,即可計算出△AOB的面積;【詳解】(1)把點A(-4,2)代入得:,解得:,∴反比例函數(shù)的解析式為:.把點B(n,-4)代入得:,解得:,∴點B的坐標為(2,-4).把點A、B的坐標代入得:,解得,∴一次函數(shù)的解析式是;(2)如圖,設AB與x軸的交點為點C,在中由可得:,解得:.∴點C的坐標是(-2,0).∴OC=2,∴S△AOB=S△AOC+S△BOC=.20、詳見解析.【分析】根據(jù)幾何體分別畫出從正面,上面和左面看到的圖形即可.【詳解】如圖所示:主視圖左視圖俯視圖本題主要考查幾何體的三視圖,掌握三視圖的畫法是解題的關鍵.21、(1)見解析;(2)【分析】(1)由DE=BC,DE∥BC,推出四邊形BCDE是平行四邊形,再證明BE=DE即可解決問題;(2)連接AC,可證AB=BC,由勾股定理可求出BD=.【詳解】(1)證明:∵∠ABD=90°,E是AD的中點,∴BE=DE=AE,∵AD=2BC,∴BC=DE,∵AD∥BC,∴四邊形BCDE為平行四邊形,∵BE=DE,∴四邊形BCDE為菱形;(2)連接AC,如圖,∵由(1)得BC=BE,AD∥BC,∴四邊形ABCE為平行四邊形,∵AC⊥BE,∴四邊形ABCE為菱形,∴BC=AB=2,AD=2BC=4,∵∠ABD=90°,∴BD===.本題考查菱形的判定和性質(zhì)、直角三角形斜邊中線的性質(zhì)、等腰三角形的判定,勾股定理等知識,解題的關鍵是熟練掌握菱形的判定方法22、(1)一次函數(shù)的解析式為,反比例函數(shù)的解析式為;(2)6【分析】(1)由點的坐標利用一次函數(shù)、反比例函數(shù)圖象上點的坐標特征即可得出反比例函數(shù)解析式;(2)聯(lián)立一次函數(shù)、反比例函數(shù)得方程,解方程組即可求出AB點坐標,求出直線與軸的交點坐標后,即可求出和,繼而求出的面積.【詳解】解:(1)將代入解析式與得,,,一次函數(shù)的解析式為,反比例函數(shù)的解析式為;(2)解方程組得或,,設直線與軸,軸交于,點,易得,即,.本題考查了反比例函數(shù)與一次函數(shù)的交點問題、待定系數(shù)法求一次函數(shù)和反比例函數(shù)解析式以及三角形的面積,解題的關鍵是:根據(jù)點的坐標利用待定系數(shù)法求出函數(shù)解析式;利用分割圖形求面積法求出的面積.23、(1)證明見解析;(2)【解析】(1)連接,根據(jù)和都是等腰三角形,即可得到再根據(jù)三角形的內(nèi)角和得到進而得出是⊙的切線;(2)根據(jù),,可以得到半圓的面積,即可的面積,即可得到陰影部分的面積.【詳解】解:(1)如圖所示,連接,∵,∴,∵,,∴中,,∴,∴中,,∴,∴是⊙的切線;(2)當時,,∵為⊙的直徑,∴,又∵,∴,∴,∴陰影部分的面積=半圓的面積-的面積=.24、猜想:;探究:6.【分析】猜想:如圖①,證明,利用相似比得,則,再證明,然后利用相似比即可得到;探究:過點作作,交的延長線于點,如圖②,設,則,先證明,得到,即,再證明,從而利用相似比得;應用:先利用勾股定理得,則,再證明,利用相似比得到,然后利用比例的性質(zhì)計算BP的長.【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論