版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.程大位是我國明朝商人,珠算發(fā)明家.他60歲時完成的《直指算法統(tǒng)宗》是東方古代數(shù)學名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法.對書中某一問題改編如下:意思是:有100個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個正好分完,大和尚共分得()個饅頭A.25 B.72 C.75 D.902.如圖,滑雪場有一坡角α為20°的滑雪道,滑雪道AC的長為200米,則滑雪道的坡頂?shù)狡碌状怪备叨華B的長為()A.200tan20°米 B.米 C.200sin20°米 D.200cos20°米3.在平面直角坐標系中,平移二次函數(shù)的圖象能夠與二次函數(shù)的圖象重合,則平移方式為()A.向左平移個單位,向下平移個單位B.向左平移個單位,向上平移個單位C.向右平移個單位,向下平移個單位D.向右平移個單位,向上平移個單位4.在六張卡片上分別寫有,π,1.5,5,0,六個數(shù),從中任意抽取一張,卡片上的數(shù)為無理數(shù)的概率是()A. B. C. D.5.下列事件中,是必然事件的是()A.購買一張彩票,中獎 B.射擊運動員射擊一次,命中靶心C.經(jīng)過有交通信號燈的路口,遇到紅燈 D.任意畫一個三角形,其內角和是180°6.向陽村年的人均收入為萬元,年的人均收入為萬元.設年平均增長率為,根據(jù)題意,可列出方程為()A. B. C. D.7.下列圖形中,繞某個點旋轉72度后能與自身重合的是()A. B.C. D.8.小明沿著坡度為的山坡向上走了,則他升高了()A. B. C. D.9.把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜邊AB=4,CD=1.把三角板DCE繞著點C順時針旋轉11°得到△D1CE1(如圖2),此時AB與CD1交于點O,則線段AD1的長度為()A. B. C. D.410.拋物線上部分點的橫坐標、縱坐標的對應值如下表:…-3-2-101……-60466…容易看出,是它與軸的一個交點,那么它與軸的另一個交點的坐標為()A. B. C. D.二、填空題(每小題3分,共24分)11.慶“元旦”,市工會組織籃球比賽,賽制為單循環(huán)形式(每兩隊之間都賽一場),共進行了45場比賽,求這次有多少隊參加比賽?若設這次有x隊參加比賽,則根據(jù)題意可列方程為_____.12.拋物線y=(x-1)2-7的對稱軸為直線_________.13.如圖,、、、是上四個點,連接、,過作交圓周于點,連接,若,則的度數(shù)為___________.14.已知,.且,設,則的取值范圍是______.15.如圖,在平面直角坐標系中,和是以坐標原點為位似中心的位似圖形,且點B(3,1),,(6,2),若點(5,6),則點的坐標為________.16.如圖,四邊形ABCD中,∠A=∠B=90°,AB=5cm,AD=3cm,BC=2cm,P是AB上一點,若以P、A、D為頂點的三角形與△PBC相似,則PA=_____cm.17.已知反比例函數(shù),當時,隨的增大而增大,則的取值范圍為_______.18.有三張除顏色外,大小、形狀完全相同的卡片,第一張卡片兩面都是紅色,第二張卡片兩面都是白色,第三張卡片一面是紅色,一面是白色,用三只杯子分別把它們遮蓋住,若任意移開其中的一只杯子,則看到的這張卡片兩面都是紅色的概率是__________.三、解答題(共66分)19.(10分)如圖,函數(shù)y1=﹣x+4的圖象與函數(shù)(x>0)的圖象交于A(m,1),B(1,n)兩點.(1)求k,m,n的值;(2)利用圖象寫出當x≥1時,y1和y2的大小關系.20.(6分)若的整數(shù)部分為,小數(shù)部分為;(1)直接寫出_________,__________;(2)計算的值.21.(6分)如圖,AB是⊙O的直徑,點C是⊙O上一點(點C不與A,B重合),連接CA,CB.∠ACB的平分線CD與⊙O交于點D.(1)求∠ACD的度數(shù);(2)探究CA,CB,CD三者之間的等量關系,并證明;(3)E為⊙O外一點,滿足ED=BD,AB=5,AE=3,若點P為AE中點,求PO的長.22.(8分)小明家所在居民樓的對面有一座大廈AB,高為74米,為測量居民樓與大廈之間的距離,小明從自己家的窗戶C處測得大廈頂部A的仰角為37°,大廈底部B的俯角為48°.(1)求∠ACB的度數(shù);(2)求小明家所在居民樓與大廈之間的距離.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈,sin48°≈,cos48°≈,tan48°≈)23.(8分)(1)解方程:(2)計算:24.(8分)如圖,點E、F在BC上,BE=CF,AB=DC,∠B=∠C.求證:∠A=∠D.25.(10分)已知拋物線y=ax2+bx+c經(jīng)過(﹣1,0),(0,﹣3),(2,3)三點.(1)求這條拋物線的表達式;(2)寫出拋物線的開口方向、對稱軸和頂點坐標.26.(10分)如圖1,在平面直角坐標系中,已知拋物線與軸交于,兩點,與軸交于點.(1)求拋物線的函數(shù)表達式;(2)若點P是位于直線BC上方拋物線上的一個動點,求△BPC面積的最大值;(3)若點D是y軸上的一點,且以B,C,D為頂點的三角形與相似,求點D的坐標;(4)若點E為拋物線的頂點,點F(3,a)是該拋物線上的一點,在軸、軸上分別找點M、N,使四邊形EFMN的周長最小,求出點M、N的坐標.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】設有x個大和尚,則有(100-x)個小和尚,根據(jù)饅頭數(shù)=3×大和尚人數(shù)+×小和尚人數(shù)結合共分100個饅頭,即可得出關于x的一元一次方程,解之即可得出結論;【詳解】解:設有x個大和尚,則有(100?x)個小和尚,依題意,得:3x+(100?x)=100,解得:x=25,∴3x=75;故選:C.本題主要考查了一元一次方程的應用,掌握一元一次方程的應用是解題的關鍵.2、C【解析】解:∵sin∠C=,∴AB=AC?sin∠C=200sin20°.故選C.3、D【解析】二次函數(shù)y=x1+4x+3=(x+1)1-1,將其向右平移1個單位,再向上平移1個單位得到二次函數(shù)y=x1.故選D.點睛:拋物線的平移時解析式的變化規(guī)律:左加右減,上加下減.4、B【解析】無限不循環(huán)小數(shù)叫無理數(shù),無理數(shù)通常有以下三種形式:一是開方開不盡的數(shù),二是圓周率π,三是構造的一些不循環(huán)的數(shù),如1.010010001……(兩個1之間0的個數(shù)一次多一個).然后用無理數(shù)的個數(shù)除以所有書的個數(shù),即可求出從中任意抽取一張,卡片上的數(shù)為無理數(shù)的概率.【詳解】∵這組數(shù)中無理數(shù)有,共2個,∴卡片上的數(shù)為無理數(shù)的概率是.故選B.本題考查了無理數(shù)的定義及概率的計算.5、D【分析】先能肯定它一定會發(fā)生的事件稱為必然事件,事先能肯定它一定不會發(fā)生的事件稱為不可能事件,必然事件和不可能事件都是確定的.【詳解】A.購買一張彩票中獎,屬于隨機事件,不合題意;B.射擊運動員射擊一次,命中靶心,屬于隨機事件,不合題意;C.經(jīng)過有交通信號燈的路口,遇到紅燈,屬于隨機事件,不合題意;D.任意畫一個三角形,其內角和是180°,屬于必然事件,符合題意;故選D.本題主要考查了必然事件,事先能肯定它一定會發(fā)生的事件稱為必然事件.6、A【分析】設年平均增長率為,根據(jù):2017年的人均收入×1+增長率=年的人均收入,列出方程即可.【詳解】設設年平均增長率為,根據(jù)題意,得:,故選:A.本題主要考查一元二次方程的應用,解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系,列出方程.7、B【解析】根據(jù)旋轉的定義即可得出答案.【詳解】解:A.旋轉90°后能與自身重合,不合題意;B.旋轉72°后能與自身重合,符合題意;C.旋轉60°后能與自身重合,不合題意;D.旋轉45°后能與自身重合,不合題意;故選B.本題考查的是旋轉:如果某一個圖形圍繞某一點旋轉一定的角度(小于360°)后能與原圖形重合,那么這個圖形就叫做旋轉對稱圖形.8、A【分析】根據(jù)題意作出圖形,然后根據(jù)坡度為1:2,設BC=x,AC=2x,根據(jù)AB=1000m,利用勾股定理求解.【詳解】解:根據(jù)題意作出圖形,∵坡度為1:2,∴設BC=x,AC=2x,∴,∵AB=1000m,∴,解得:,故選A.本題考查了解直角三角形的應用,解答本題的關鍵是根據(jù)坡度構造直角三角形然后求解.9、A【解析】試題分析:由題意易知:∠CAB=41°,∠ACD=30°.若旋轉角度為11°,則∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,則AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.故選A.考點:1.旋轉;2.勾股定理.10、C【分析】根據(jù)(0,6)、(1,6)兩點求得對稱軸,再利用對稱性解答即可.【詳解】∵拋物線經(jīng)過(0,6)、(1,6)兩點,∴對稱軸x==;點(?2,0)關于對稱軸對稱點為(3,0),因此它與x軸的另一個交點的坐標為(3,0).故選C.本題考查了二次函數(shù)的對稱性,解題的關鍵是求出其對稱軸.二、填空題(每小題3分,共24分)11、=45【分析】設這次有x隊參加比賽,由于賽制為單循環(huán)形式(每兩隊之間都賽一場),則此次比賽的總場數(shù)為:場.根據(jù)題意可知:此次比賽的總場數(shù)=45場,依此等量關系列出方程.【詳解】解:設這次有x隊參加比賽,則此次比賽的總場數(shù)為場,根據(jù)題意列出方程得:=45,故答案是:.考查了由實際問題抽象出一元二次方程,本題的關鍵在于理解清楚題意,找出合適的等量關系,列出方程,再求解.需注意賽制是“單循環(huán)形式”,需使兩兩之間比賽的總場數(shù)除以1.12、x=1【分析】根據(jù)拋物線y=a(x-h)2+k的對稱軸是x=h即可確定所以拋物線y=(x-1)2-7的對稱軸.【詳解】解:∵y=(x-1)2-7
∴對稱軸是x=1
故填空答案:x=1.本題主要考查了二次函數(shù)的性質,熟記二次函數(shù)的對稱軸,頂點坐標是解答此題的關鍵.13、【分析】由,利用圓的內接四邊形求進而求解,利用垂徑定理與等腰三角形的三線合一可得答案.【詳解】解:四邊形是的內接四邊形,故答案為:本題考查的是垂徑定理,同圓或等圓中,一條弧所對的圓周角是它所對的圓心角的一半,圓的內接四邊形的性質,等腰三角形的三線合一,掌握以上知識是解題的關鍵.14、【分析】先根據(jù)已知得出n=1-m,將其代入y中,得出y關于m的二次函數(shù)即可得出y的范圍【詳解】解:∵∴n=1-m,∴∵,∴,∴當m=時,y有最小值,當m=0時,y=1當m=1時,y=1∴故答案為:本題考查了二次函數(shù)的最值問題,熟練掌握二次函數(shù)的性質是解題的關鍵15、(2.5,3)【分析】利用點B(3,1),B′(6,2)即可得出位似比進而得出A的坐標.【詳解】解:∵點B(3,1),B′(6,2),點A′(5,6),∴A的坐標為:(2.5,3).故答案為:(2.5,3).本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.16、2或1【分析】根據(jù)相似三角形的判定與性質,當若點A,P,D分別與點B,C,P對應,與若點A,P,D分別與點B,P,C對應,分別分析得出AP的長度即可.【詳解】解:設AP=xcm.則BP=AB﹣AP=(5﹣x)cm以A,D,P為頂點的三角形與以B,C,P為頂點的三角形相似,①當AD:PB=PA:BC時,,解得x=2或1.②當AD:BC=PA+PB時,,解得x=1,∴當A,D,P為頂點的三角形與以B,C,P為頂點的三角形相似,AP的值為2或1.故答案為2或1.本題考查了相似三角形的問題,掌握相似三角形的性質以及判定定理是解題的關鍵.17、m>1【分析】根據(jù)反比例函數(shù),如果當x>0時,y隨自變量x的增大而增大,可以得到1-m<0,從而可以解答本題.【詳解】解:∵反比例函數(shù),當x>0時,y隨x的增大而增大,∴1-m<0,
解得,m>1,
故答案為:m>1.本題考查反比例函數(shù)的性質,解答本題的關鍵是明確題意,利用反比例函數(shù)的性質解答.18、【分析】根據(jù)概率的相關性質,可知兩面都是紅色的概率=兩面都是紅色的張數(shù)/總張數(shù).【詳解】P(兩面都是紅色)=.本題主要考察了概率的相關性質.三、解答題(共66分)19、(1)m=3,k=3,n=3;(1)當1<x<3時,y1>y1;當x>3時,y1<y1;當x=1或x=3時,y1=y1.【分析】(1)把A與B坐標代入一次函數(shù)解析式求出m與n的值,將A坐標代入反比例解析式求出k的值;(1)利用圖像,可知分x=1或x=3,1<x<3與x>3三種情況判斷出y1和y1的大小關系即可.【詳解】(1)把A(m,1)代入y=-x+4得:1=﹣m+4,即m=3,∴A(3,1),把A(3,1)代入y=得:k=3,把B(1,n)代入一次函數(shù)解析式得:n=﹣1+4=3;(1)∵A(3,1),B(1,3),∴根據(jù)圖像得當1<x<3時,y1>y1;當x>3時,y1<y1;當x=1或x=3時,y1=y1.20、(1),;(2).【分析】先根據(jù)算術平方根的定義得到1<<2,則x=1,y=-1,然后把x、y的值代入,再進行二次根式的混合運算即可.【詳解】解:解:∵1<3<4,
∴1<<2,
∴x=1,y=-1,(2)當時,原式本題考查估算無理數(shù)的大小:利用完全平方數(shù)和算術平方根對無理數(shù)的大小進行估算.也考查二次根式的混合運算.21、(1)∠ACD=45°;(2)BC+AC=CD,見解析;(3)OP=.【分析】(1)由圓周角的定義可求∠ACB=90°,再由角平分線的定義得到∠ACD=45°;(2)連接CO延長與圓O交于點G,連接DG、BG,延長DG、CB交于點F;先證明△BGF是等腰直角三角形,得到BG=BF,AG=BF,再證明△CDF是等腰三角三角形,得到CF=CD,即可求得BC+AC=CD;(3)過點A作AM⊥ED,過點B作BN⊥ED交ED延長線與點N,連接BE;先證明Rt△AMD≌Rt△DNB(AAS),再證明△AED是等腰三角形,分別求得EN=,BN=,在Rt△EBN中,BE=,OP=BN=.【詳解】解:(1)∵AB是直徑,點C在圓上,∴∠ACB=90°,∵∠ACB的平分線CD與⊙O交于點D,∴∠ACD=45°;(2)BC+AC=CD,連接CO延長與圓O交于點G,連接DG、BG,延長DG、CB交于點F;∴∠CDG=∠CBG=90°,∵∠ACB=90°,∴AC∥BG,∴∠CGB=∠ACG,∴∠CGB=45°+∠DCG,∵∠CBF=90°+∠DCG,∴∠BGF=45°,∴△BGF是等腰直角三角形,∴BG=BF,∵△ACO≌△BGO(SAS),∴AG=BF,∵△CDF是等腰三角三角形,∴CF=CD,∴BC+AC=CD;(3)過點A作AM⊥ED,過點B作BN⊥ED交ED延長線與點N,連接BE;∵∠ACD=∠ABD=45°,∠ADB=90°,∴AD=BD,∵AB=5,∴BD=AD=,∵∠MAD=∠BDN,∴Rt△AMD≌Rt△DNB(AAS),∴AM=DN,MD=BN,∵ED=BD,∴△AED是等腰三角形,∵AE=3,∴AM=,DM=,∴EN=,BN=,在Rt△EBN中,BE=,∵P是AE的中點,O是AB的中點,∴OP=BN,∴OP=.本題是一道關于圓的綜合題目,考查了等腰三角形的性質、圓周角定義、角平分線、全等三角形的判定及性質,勾股定理等多個知識點,根據(jù)題目作出適合的輔助線是解此題的關鍵.22、(1)85°;(2)小明家所在居民樓與大廈的距離CD的長度是40米.【分析】(1)結合圖形即可得出答案;(2)利用所給角的三角函數(shù)用CD表示出AD、BD;根據(jù)AB=AD+BD=74米,即可求得居民樓與大廈的距離.【詳解】解:(1)由圖知∠ACB=37°+48°=85°;(2)設CD=x米.在Rt△ACD中,tan37°=,則=,∴AD=x;在Rt△BCD中,tan48°=,則=,∴BD=x.∵AD+BD=AB,∴x+x=74,解得:x=40,答:小明家所在居民樓與大廈的距離CD的長度是40米.本題考查的是解直角三角形的應用?仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數(shù)的定義是解題的關鍵.23、(1);(2)-1【分析】(1)方程因式分解后即可求出解;(2)原式利用特殊角的三角函數(shù)值計算,即可得到結果.【詳解】(1),,;(2)=1-2=-1本題考查學生的運算能力,解題的關鍵是熟練運用運算法則,本題屬于基礎題型.24、答案見解析【分析】由BE=CF可得BF=CE,再結合AB=DC,∠B=∠C可證得△ABF≌△DCE,問題得證.【詳解】解∵BE=CF,∴BE+EF=CF+EF,即BF=CE.在△ABF和△DCE中,∴△ABF≌△DCE,∴∠A=∠D.本題考查了全等三角形的判定和性質,是中考中比較常見的知識點,一般難度不大,需熟練掌握全等三角形的判定和性質.25、(1)y=2x2﹣x﹣1;(2)拋物線的開口向上,對稱軸為x=,頂點坐標為(,﹣).【分析】(1)將三點代入y=ax2+bx+c,得到三元一次方程組,解方程組即可得到a,b,c的值,從而得到拋物線的解析式.(2)把解析式化成頂點式,根據(jù)拋物線的性質即可得出結論.【詳解】解:(1)把(-1,0),(0,-1),(2,1)代入y=ax2+bx+c,得,解得.所以,這個拋物線的表達式為y=2x2﹣x﹣1.(2)y=2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年農業(yè)檢測能力驗證合同
- 交通運輸部所屬事業(yè)單位2026年度第三批統(tǒng)一公開招聘備考題庫及一套答案詳解
- 2025年臺州學院編制外合同工招聘備考題庫及參考答案詳解一套
- 2025年茂名市電白區(qū)電城中學招聘合同制教師備考題庫帶答案詳解
- 國家知識產權局專利局專利審查協(xié)作廣東中心2026年度專利審查員公開招聘備考題庫及一套完整答案詳解
- 2025年杭州高新區(qū)(濱江)綜合行政執(zhí)法局招聘協(xié)管員備考題庫及答案詳解參考
- web項目論壇課程設計
- 《AQ 2031-2011金屬非金屬地下礦山監(jiān)測監(jiān)控系統(tǒng)建設規(guī)范》專題研究報告
- 2025西藏日喀則市第二中等職業(yè)技術學校招聘編外人員8人考試核心題庫及答案解析
- 2025年消費電子柔性電路用銅箔市場報告
- AGV小車安全培訓會課件
- 紡織業(yè)賬務知識培訓課件
- 1688采購合同范本
- 購買鐵精粉居間合同范本
- GB/T 29730-2025冷熱水用分集水器
- 污水廠安全知識培訓
- (2025年標準)存單轉讓協(xié)議書
- 醫(yī)學科研誠信專項培訓
- 電力通信培訓課件
- 第五版FMEA控制程序文件編制
- 藥物致癌性試驗必要性指導原則
評論
0/150
提交評論