版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.拋物線y=(x-4)(x+2)的對稱軸方程為()A.直線x=-2 B.直線x=1 C.直線x=-4 D.直線x=42.如圖,已知⊙O的直徑為4,∠ACB=45°,則AB的長為()A.4 B.2 C.4 D.23.書架上放著三本小說和兩本散文,小明從中隨機(jī)抽取兩本,兩本都是小說的概率是()A. B. C. D.4.下列條件中,能判斷四邊形是菱形的是()A.對角線互相垂直且相等的四邊形B.對角線互相垂直的四邊形C.對角線相等的平行四邊形D.對角線互相平分且垂直的四邊形5.如圖,AB為圓O直徑,C、D是圓上兩點,ADC=110°,則OCB度()A.40 B.50 C.60 D.706.已知(a≠0,b≠0),下列變形錯誤的是()A. B.2a=3b C. D.3a=2b7.如圖,在Rt△ABC中,∠BAC=90o,AH是高,AM是中線,那么在結(jié)論①∠B=∠BAM,②∠B=∠MAH,③∠B=∠CAH中錯誤的個數(shù)有()A.0個 B.1個 C.2個 D.3個8.對于反比例函數(shù)y=(k≠0),下列所給的四個結(jié)論中,正確的是()A.若點(3,6)在其圖象上,則(﹣3,6)也在其圖象上B.當(dāng)k>0時,y隨x的增大而減小C.過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為kD.反比例函數(shù)的圖象關(guān)于直線y=﹣x成軸對稱9.如圖,AB是⊙O的直徑,CD是⊙O的弦,∠ACD=40°,則∠BAD為()A.40° B.50° C.60° D.70°10.如圖所示幾何體的主視圖是()A. B. C. D.11.若關(guān)于的一元二次方程有實數(shù)根,則的值不可能是()A. B. C.0 D.201812.把函數(shù)y=﹣3x2的圖象向右平移2個單位,所得到的新函數(shù)的表達(dá)式是()A.y=﹣3x2﹣2 B.y=﹣3(x﹣2)2 C.y=﹣3x2+2 D.y=﹣3(x+2)2二、填空題(每題4分,共24分)13.在1:5000的地圖上,某兩地間的距離是,那么這兩地的實際距離為______________千米.14.如圖,約定:上方相鄰兩數(shù)之和等于這兩數(shù)下方箭頭共同指向的數(shù).當(dāng)y=﹣1時,n=_____.15.如圖,在四邊形ABCD中,∠DAB=120°,∠DCB=60°,CB=CD,AC=8,則四邊形ABCD的面積為__.16.分母有理化:=_____.17.如圖,正方形ABCD的邊長為4,E為BC上的一點,BE=1,F(xiàn)為AB上的一點,AF=2,P為AC上的一個動點,則PF+PE的最小值為______________18.一個正n邊形的一個外角等于72°,則n的值等于_____.三、解答題(共78分)19.(8分)如圖,梯形ABCD中,AB//CD,且AB=2CD,E,F(xiàn)分別是AB,BC的中點.EF與BD相交于點M.(1)求證:△EDM∽△FBM;(2)若DB=9,求BM.20.(8分)如圖,一次函數(shù)圖象經(jīng)過點,與軸交于點,且與正比例函數(shù)的圖象交于點,點的橫坐標(biāo)是.請直接寫出點的坐標(biāo)(,);求該一次函數(shù)的解析式;求的面積.21.(8分)如圖,已知直線與x軸、y軸分別交于點A,B,與雙曲線分別交于點C,D,且點C的坐標(biāo)為.(1)分別求出直線、雙曲線的函數(shù)表達(dá)式.(2)求出點D的坐標(biāo).(3)利用圖象直接寫出:當(dāng)x在什么范圍內(nèi)取值時?22.(10分)如圖,在矩形ABCD中,已知AD>AB.在邊AD上取點E,連結(jié)CE.過點E作EF⊥CE,與邊AB的延長線交于點F.(1)求證:△AEF∽△DCE.(2)若AB=3,AE=4,DE=6,求線段BF的長.23.(10分)在平面直角坐標(biāo)系中,點到直線的距離即為點到直線的垂線段的長.(1)如圖1,取點M(1,0),則點M到直線l:y=x﹣1的距離為多少?(2)如圖2,點P是反比例函數(shù)y=在第一象限上的一個點,過點P分別作PM⊥x軸,作PN⊥y軸,記P到直線MN的距離為d0,問是否存在點P,使d0=?若存在,求出點P的坐標(biāo),若不存在,請說明理由.(3)如圖3,若直線y=kx+m與拋物線y=x2﹣4x相交于x軸上方兩點A、B(A在B的左邊).且∠AOB=90°,求點P(2,0)到直線y=kx+m的距離最大時,直線y=kx+m的解析式.24.(10分)一艘漁船在A處觀測到東北方向有一小島C,已知小島C周圍4.8海里范圍內(nèi)是水產(chǎn)養(yǎng)殖場.漁船沿北偏東30°方向航行10海里到達(dá)B處,在B處測得小島C在北偏東60°方向,這時漁船改變航線向正東(即BD)方向航行,這艘漁船是否有進(jìn)入養(yǎng)殖場的危險?25.(12分)如圖,在平面直角坐標(biāo)系中A點的坐標(biāo)為(8,y),AB⊥x軸于點B,sin∠OAB=,反比例函數(shù)y=的圖象的一支經(jīng)過AO的中點C,且與AB交于點D.(1)求反比例函數(shù)解析式;(2)若函數(shù)y=3x與y=的圖象的另一支交于點M,求三角形OMB與四邊形OCDB的面積的比.26.如圖,以矩形ABCD的邊CD為直徑作⊙O,點E是AB的中點,連接CE交⊙O于點F,連接AF并延長交BC于點H.(1)若連接AO,試判斷四邊形AECO的形狀,并說明理由;(2)求證:AH是⊙O的切線;(3)若AB=6,CH=2,則AH的長為.
參考答案一、選擇題(每題4分,共48分)1、B【解析】把拋物線解析式整理成頂點式解析式,然后寫出對稱軸方程即可.【詳解】解:y=(x+2)(x-4),=x2-2x-8,=x2-2x+1-9,=(x-1)2-9,∴對稱軸方程為x=1.故選:B.本題考查了二次函數(shù)的性質(zhì),是基礎(chǔ)題,把拋物線解析式整理成頂點式解析式是解題的關(guān)鍵.2、D【分析】連接OA、OB,根據(jù)同弧所對的圓周角是圓心角的一半,即可求出∠AOB=90°,再根據(jù)等腰直角三角形的性質(zhì)即可求出AB的長.【詳解】連接OA、OB,如圖,∵∠AOB=2∠ACB=2×45°=90°,∴△AOB為等腰直角三角形,∴AB=OA=2.故選:D.此題考查的是圓周角定理和等腰直角三角形的性質(zhì),掌握同弧所對的圓周角是圓心角的一半是解決此題的關(guān)鍵.3、A【分析】畫樹狀圖(用A、B、C表示三本小說,a、b表示兩本散文)展示所有20種等可能的結(jié)果數(shù),找出從中隨機(jī)抽取2本都是小說的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:(用A、B、C表示三本小說,a、b表示兩本散文)共有20種等可能的結(jié)果數(shù),其中從中隨機(jī)抽取2本都是小說的結(jié)果數(shù)為6,∴從中隨機(jī)抽取2本都是小說的概率==.故選:A.本題主要考查等可能事件的概率,掌握畫樹狀圖以及概率公式,是解題的關(guān)鍵.4、D【解析】利用菱形的判定方法對各個選項一一進(jìn)行判斷即可.【詳解】解:A、對角線互相垂直相等的四邊形不一定是菱形,此選項錯誤;B、對角線互相垂直的四邊形不一定是菱形,此選項錯誤;C、對角線相等的平行四邊形也可能是矩形,此選項錯誤;D、對角線互相平分且垂直的四邊形是菱形,此選項正確;故選:D.本題考查了菱形的判定,平行四邊形的性質(zhì),熟練運(yùn)用這些性質(zhì)是本題的關(guān)鍵.5、D【分析】根據(jù)角的度數(shù)推出弧的度數(shù),再利用外角∠AOC的性質(zhì)即可解題.【詳解】解:∵ADC=110°,即優(yōu)弧的度數(shù)是220°,∴劣弧的度數(shù)是140°,∴∠AOC=140°,∵OC=OB,∴∠OCB=∠AOC=70°,故選D.本題考查圓周角定理、外角的性質(zhì)等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考常考題型.6、B【分析】根據(jù)兩內(nèi)項之積等于兩外項之積對各選項分析判斷即可得解.【詳解】解:由得,3a=2b,A、由等式性質(zhì)可得:3a=2b,正確;B、由等式性質(zhì)可得2a=3b,錯誤;C、由等式性質(zhì)可得:3a=2b,正確;D、由等式性質(zhì)可得:3a=2b,正確;故選B.本題考查了比例的性質(zhì),主要利用了兩內(nèi)項之積等于兩外項之積.7、B【分析】根據(jù)直角三角形斜邊上的中線性質(zhì)和等腰三角形的性質(zhì)得出∠B=∠BAM,根據(jù)已知條件判斷∠B=∠MAH不一定成立;根據(jù)三角形的內(nèi)角和定理及余角的性質(zhì)得出∠B=∠CAH.【詳解】①∵在Rt△ABC中,∠BAC=90°,AH是高,AM是中線,∴AM=BM,∴∠B=∠BAM,①正確;②∵∠B=∠BAM,不能判定AM平分∠BAH,∴∠B=∠MAH不一定成立,②錯誤;③∵∠BAC=90°,AH是高,∴∠B+∠BAH=90°,∠CAH+∠BAH=90°,∴∠B=∠CAH,③正確.故選:B.本題主要考查對直角三角形斜邊上的中線性質(zhì),三角形的內(nèi)角和定理,等腰三角形的性質(zhì)等知識點的理解和掌握,能根據(jù)這些性質(zhì)進(jìn)行推理是解此題的關(guān)鍵.8、D【解析】分析:根據(jù)反比例函數(shù)的性質(zhì)一一判斷即可;詳解:A.若點(3,6)在其圖象上,則(﹣3,6)不在其圖象上,故本選項不符合題意;B.當(dāng)k>0時,y隨x的增大而減小,錯誤,應(yīng)該是當(dāng)k>0時,在每個象限,y隨x的增大而減小;故本選項不符合題意;C.錯誤,應(yīng)該是過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為|k|;故本選項不符合題意;D.正確,本選項符合題意.故選D.點睛:本題考查了反比例函數(shù)的性質(zhì),解題的關(guān)鍵是熟練掌握反比例函數(shù)的性質(zhì),靈活運(yùn)用所學(xué)知識解決問題,屬于中考常考題型.9、B【分析】連接BD,根據(jù)直徑所對的圓周角是直角可得∠ADB的度數(shù),然后在根據(jù)同弧所對的圓周角相等即可解決問題.【詳解】解:如圖,連接BD.∵AB是直徑,∴∠ADB=90°,∵∠B=∠C=40°,∴∠DAB=90°﹣40°=50°,故選:B.本題考查的是直徑所對的圓周角是直角與同弧所對的圓周角相等的知識,能夠連接BD是解題的關(guān)鍵.10、C【解析】根據(jù)主視圖的定義即可得出答案.【詳解】從正面看,共有兩列,第一列有兩個小正方形,第二列有一個小正方形,在下方,只有選項C符合故答案選擇C.本題考查的是三視圖,比較簡單,需要熟練掌握三視圖的畫法.11、A【分析】由題意直接根據(jù)一元二次方程根的判別式,進(jìn)行分析計算即可求出答案.【詳解】解:由題意可知:△==4+4m≥0,∴m≥-1,的值不可能是-2.故選:A.本題考查一元二次方程,解題的關(guān)鍵是熟練運(yùn)用一元二次方程的根的判別式進(jìn)行分析求解.12、B【分析】根據(jù)二次函數(shù)圖象左加右減,上加下減的平移規(guī)律進(jìn)行解答.【詳解】二次函數(shù)y=﹣3x1的圖象向右平移1個單位,得:y=﹣3(x﹣1)1.故選:B.本題考查的是函數(shù)圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.二、填空題(每題4分,共24分)13、1【分析】根據(jù)比例尺的意義,可得答案.【詳解】解:,故答案為:1.本題考查了比例尺,利用比例尺的意義是解題關(guān)鍵,注意把厘米化成千米.14、-1.【分析】首先根據(jù)題意,可得:x2+2x=m,2x+3=n,m+n=y(tǒng);然后根據(jù)y=﹣1,可得:x2+2x+2x+3=﹣1,據(jù)此求出x的值是多少,進(jìn)而求出n的值是多少即可.【詳解】根據(jù)題意,可得:x2+2x=m,2x+3=n,m+n=y(tǒng),∵y=﹣1,∴x2+2x+2x+3=﹣1,∴x2+4x+4=0,∴(x+2)2=0,∴x+2=0,解得x=﹣2,∴n=2x+3=2×(﹣2)+3=﹣1.故答案為:﹣1.此題考查一元二次方程的解法,根據(jù)方程的特點選擇適合的解法是解題的關(guān)鍵.15、16【分析】延長AB至點E,使BE=DA,連接CE,作CF⊥AB于F,證明△CDA≌△CBE,根據(jù)全等三角形的性質(zhì)得到CA=CE,∠BCE=∠DCA,得到△CAE為等邊三角形,根據(jù)等邊三角形的性質(zhì)計算,得到答案.【詳解】延長AB至點E,使BE=DA,連接CE,作CF⊥AB于F,∵∠DAB+∠DCB=120°+60°=180°,∴∠CDA+∠CBA=180°,又∠CBE+∠CBA=180°,∴∠CDA=∠CBE,在△CDA和△CBE中,,∴△CDA≌△CBE(SAS)∴CA=CE,∠BCE=∠DCA,∵∠DCB=60°,∴∠ACE=60°,∴△CAE為等邊三角形,∴AE=AC=8,CF=AC=4,則四邊形ABCD的面積=△CAB的面積=×8×4=16,故答案為:16.考核知識點:等邊三角形判定和性質(zhì),三角函數(shù).作輔助線,構(gòu)造直角三角形是關(guān)鍵.16、+.【解析】一般二次根式的有理化因式是符合平方差公式的特點的式子.據(jù)此作答.【詳解】解:==+.故答案為+.本題考查二次根式的有理化.根據(jù)二次根式的乘除法法則進(jìn)行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特點的式子.17、【詳解】試題分析:∵正方形ABCD是軸對稱圖形,AC是一條對稱軸∴點F關(guān)于AC的對稱點在線段AD上,設(shè)為點G,連結(jié)EG與AC交于點P,則PF+PE的最小值為EG的長∵AB=4,AF=2,∴AG=AF=2∴EG=考點:軸對稱圖形18、1.【分析】可以利用多邊形的外角和定理求解.【詳解】解:∵正n邊形的一個外角為72°,∴n的值為360°÷72°=1.故答案為:1本題考查了多邊形外角和,熟記多邊形的外角和等于360度是解題的關(guān)鍵.三、解答題(共78分)19、(1)證明見解析(2)3【解析】試題分析:(1)要證明△EDM∽△FBM成立,只需要證DE∥BC即可,而根據(jù)已知條件可證明四邊形BCDE是平行四邊形,從而可證明相似;(2)根據(jù)相似三角形的性質(zhì)得對應(yīng)邊成比例,然后代入數(shù)值計算即可求得線段的長.試題解析:(1)證明:∵AB="2CD",E是AB的中點,∴BE=CD,又∵AB∥CD,∴四邊形BCDE是平行四邊形,∴BC∥DE,BC=DE,∴△EDM∽△FBM;(2)∵BC=DE,F(xiàn)為BC的中點,∴BF=DE,∵△EDM∽△FBM,∴,∴BM=DB,又∵DB=9,∴BM=3.考點:1.梯形的性質(zhì);2.平行四邊形的判定與性質(zhì);3.相似三角形的判定與性質(zhì).20、(1);(2);(3)1【分析】(1)根據(jù)正比例函數(shù)即可得出答案;(2)根據(jù)點A和B的坐標(biāo),利用待定系數(shù)法求解即可;(3)先根據(jù)題(2)求出點C的坐標(biāo),從而可知OC的長,再利用三角形的面積公式即可得.【詳解】(1)將代入正比例函數(shù)得,故點的坐標(biāo)是;(2)設(shè)這個一次函數(shù)的解析式為把代入,得解方程組,得故這個一次函數(shù)的解析式為;(3)在中,令,得即點的坐標(biāo)是,則的面積故的面積為1.本題考查了一次函數(shù)的幾何應(yīng)用、利用待定系數(shù)法求一次函數(shù)的解析式,掌握一次函數(shù)的圖象與性質(zhì)是解題關(guān)鍵.21、(1),;(2)點D的坐標(biāo)是;(3)【解析】(1)把C(-1,2)代入y1=x+m得到m的值,把C(-1,2)代入雙曲線得到k的值;(2)解由兩個函數(shù)的解析式組成的方程組,即可得交點坐標(biāo)D;
(3)觀察圖象得到當(dāng)-3<x<-2時一次函數(shù)的函數(shù)值比反比例函數(shù)的函數(shù)值要大.【詳解】解:(1)∵點在的圖象上;∴,解得,則.∵在的圖象上,∴,解得,∴.(2)聯(lián)立得,解得,或,∵點C的坐標(biāo)是,∴點D的坐標(biāo)是.(3)由圖象可知,當(dāng)時,本題考查了用待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式即反比例函數(shù)與一次函數(shù)的交點問題.解題的關(guān)鍵是:(1)代入點C的坐標(biāo)求出m、k的值;(2)把兩函數(shù)的解析式聯(lián)立起來組成方程組,解方程組即可得到它們的交點坐標(biāo).(3)根據(jù)兩函數(shù)圖象的上下位置關(guān)系找出不等式的解集.本題考查的是反比例函數(shù)與一次函數(shù)的交點問題及也考查了數(shù)形結(jié)合的思想.22、(1)見解析;(2)1【分析】(1)根據(jù)兩個角對應(yīng)相等判定兩個三角形相似即可;(2)根據(jù)相似三角形的性質(zhì),對應(yīng)邊成比例即可求解.【詳解】(1)證明:四邊形是矩形,,,,.(2).,,,,,,.答:線段的長為1.本題考查了相似三角形的判定和性質(zhì),解決本題的關(guān)鍵是掌握相似三角形的判定方法和性質(zhì).23、(1);(2)點P(,2)或(2,);(3)y=﹣2x+1【分析】(1)如圖1,設(shè)直線l:y=x﹣1與x軸,y軸的交點為點A,點B,過點M作ME⊥AB,先求出點A,點B坐標(biāo),可得OA=2,OB=1,AM=1,由勾股定理可求AB長,由銳角三角函數(shù)可求解;(2)設(shè)點P(a,),用參數(shù)a表示MN的長,由面積關(guān)系可求a的值,即可求點P坐標(biāo);(3)如圖3,過點A作AC⊥x軸于點C,過點B作BD⊥y軸于點D,設(shè)點A(a,a2﹣4a),點B(b,b2﹣4b),通過證明△AOC∽△BOD,可得ab﹣4(a+b)+17=0,由根與系數(shù)關(guān)系可求a+b=k+4,ab=﹣m,可得y=kx+1﹣4k=k(x﹣4)+1,可得直線y=k(x﹣4)+1過定點N(4,1),則當(dāng)PN⊥直線y=kx+m時,點P到直線y=kx+m的距離最大,由待定系數(shù)法可求直線PN的解析式,可求k,m的值,即可求解.【詳解】解:(1)如圖1,設(shè)直線l:y=x﹣1與x軸,y軸的交點為點A,點B,過點M作ME⊥AB,∵直線l:y=x﹣1與x軸,y軸的交點為點A,點B,∴點A(2,0),點B(0,﹣1),且點M(1,0),∴AO=2,BO=1,AM=OM=1,∴AB===,∵tan∠OAB=tan∠MAE=,∴,∴ME=,∴點M到直線l:y=x﹣1的距離為;(2)設(shè)點P(a,),(a>0)∴OM=a,ON=,∴MN==,∵PM⊥x軸,PN⊥y軸,∠MON=10°,∴四邊形PMON是矩形,∴S△PMN=S矩形PMON=2,∴×MN×d0=2,∴×=4,∴a4﹣10a2+16=0,∴a1=2,a2=﹣2(舍去),a3=2,a4=﹣2(舍去),∴點P(,2)或(2,),(3)如圖3,過點A作AC⊥x軸于點C,過點B作BD⊥y軸于點D,設(shè)點A(a,a2﹣4a),點B(b,b2﹣4b),∵∠AOB=10°,∴∠AOC+∠BOD=10°,且∠AOC+∠CAO=10°,∴∠BOD=∠CAO,且∠ACO=∠BDO,∴△AOC∽△BOD,∴,∴∴ab﹣4(a+b)+17=0,∵直線y=kx+m與拋物線y=x2﹣4x相交于x軸上方兩點A、B,∴a,b是方程kx+m=x2﹣4x的兩根,∴a+b=k+4,ab=﹣m,∴﹣m﹣4(k+4)+17=0,∴m=1﹣4k,∴y=kx+1﹣4k=k(x﹣4)+1,∴直線y=k(x﹣4)+1過定點N(4,1),∴當(dāng)PN⊥直線y=kx+m時,點P到直線y=kx+m的距離最大,設(shè)直線PN的解析式為y=cx+d,∴解得∴直線PN的解析式為y=x﹣1,∴k=﹣2,∴m=1﹣4×(﹣2)=1,∴直線y=kx+m的解析式為y=﹣2x+1.本題是二次函數(shù)綜合題,考查了二次函數(shù)的性質(zhì),待定系數(shù)法求解析式,根與系數(shù)關(guān)系,相似三角形的判定和性質(zhì),銳角三角函數(shù)等知識,利用參數(shù)列出方程是本題的關(guān)鍵.24、漁船沒有進(jìn)入養(yǎng)殖場的危險.【解析】試題分析:點B作BM⊥AH于M,過點C作CN⊥AH于N,利用直角三角形的性質(zhì)求得CK的長,若CK>4.8則沒有進(jìn)入養(yǎng)殖場的危險,否則有危險.試題解析:過點B作BM⊥AH于M,∴BM∥AF.∴∠ABM=∠BAF=30°.在△BAM中,AM=AB=5,BM=.過點C作CN⊥AH于N,交BD于K.在Rt△BCK中,∠CBK=90°-60°=30°設(shè)CK=,則BK=在Rt△ACN中,∵∠CAN=90°-45°=45°,∴AN=NC.∴AM+MN=CK+KN.又NM=BK,BM=KN.∴.解得∵5海里>4.8海里,∴漁船沒有進(jìn)入養(yǎng)殖場的危險.答:這艘漁船沒有進(jìn)入養(yǎng)殖場危險.25、y=;【解析】試題分析:(1)先根據(jù)銳角三角函數(shù)的定義,求出OA的值,然后根據(jù)勾股定理求出AB的值,然后由C點是OA的中點,求出C點的坐標(biāo),然后將C的坐標(biāo)代入反比例函數(shù)y=中,即可確定反比例函數(shù)解析式;(2)先將y=3x與y=聯(lián)立成方程組,求出點M的坐標(biāo),然后求出點D的坐標(biāo),然后連接BC,分別求出△OMB的面積,△OBC的面積,△BCD的面積,進(jìn)而確定四邊形OCDB的面積,進(jìn)而可求三角形OMB與四邊形OCDB的面積的比.試題解析:(1)∵A點的坐標(biāo)為(8,y),∴OB=8,∵AB⊥x軸于點B,sin∠OAB=,∴,∴OA=10,由勾股定理得:AB=,∵點C是OA的中點,且在第一象限內(nèi),∴C(4,3),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 車險知識課件培訓(xùn)
- 車間級安全培訓(xùn)教育內(nèi)容課件
- 2025年學(xué)校預(yù)防校園欺凌工作總結(jié)范本(3篇)
- 車間碰撞事故安全培訓(xùn)課件
- 2026年廣東深圳市高職單招職業(yè)適應(yīng)性測試試題解析及答案
- 藥物外滲高級護(hù)理2026
- 車間工人安全事故培訓(xùn)課件
- 車間安全培訓(xùn)問答題課件
- 糖尿病患者血脂管理指南2026
- 車間安全員消防培訓(xùn)記錄課件
- 2025-2026學(xué)年蘇教版(2024)小學(xué)科學(xué)二年級上冊期末測試卷附答案(共三套)
- 垃圾清運(yùn)補(bǔ)充合同范本
- 2026屆湖南省長沙市長郡集團(tuán)九年級物理第一學(xué)期期末預(yù)測試題含解析
- 上海市旅館從業(yè)人員考試及答案解析
- 生日主題宴會設(shè)計方案
- 《JJG 1081.1-2024鐵路機(jī)車車輛輪徑量具檢定規(guī)程 第1部分:輪徑尺》 解讀
- 《基坑圍護(hù)結(jié)構(gòu)滲漏檢測技術(shù)標(biāo)準(zhǔn)》
- 代辦營業(yè)執(zhí)照合同模板范文
- 職業(yè)教育示范性教師教學(xué)創(chuàng)新團(tuán)隊建設(shè)方案
- 防暴演練安全培訓(xùn)課件
- 基礎(chǔ)越南語1課件
評論
0/150
提交評論