版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年九上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.如圖所示,在矩形ABCD中,點F是BC的中點,DF的延長線與AB的延長線相交于點E,DE與AC相交于點O,若,則()A.4 B.6 C.8 D.102.正六邊形的周長為6,則它的面積為()A. B. C. D.3.方程x2+5x=0的適當解法是()A.直接開平方法 B.配方法C.因式分解法 D.公式法4.如圖,,相交于點,.若,,則與的面積之比為()A. B. C. D.5.如圖,將圖形用放大鏡放大,應(yīng)該屬于().A.平移變換 B.相似變換 C.旋轉(zhuǎn)變換 D.對稱變換6.已知如圖,中,,點在邊上,且,則的度數(shù)是().A. B. C. D.7.已知如圖中,點為,的角平分線的交點,點為延長線上的一點,且,,若,則的度數(shù)是().A. B. C. D.8.如圖是小明一天看到的一根電線桿的影子的俯視圖,按時間先后順序排列正確的是()A.①②③④ B.④③②① C.④③①② D.②③④①9.如圖,將△ABC沿BC邊上的中線AD平移到△A'B'C'的位置,已知△ABC的面積為9,陰影部分三角形的面積為1.若AA'=1,則A'D等于()A.2 B.3 C. D.10.下列四個幾何體中,主視圖是三角形的是()A. B. C. D.11.關(guān)于二次函數(shù)y=﹣(x+1)2+2的圖象,下列判斷正確的是()A.圖象開口向上B.圖象的對稱軸是直線x=1C.圖象有最低點D.圖象的頂點坐標為(﹣1,2)12.如圖△ABC中,BE平分∠ABC,DE∥BC,若DE=2AD,AE=2,那么AC的長為()A.3 B.4 C.5 D.6二、填空題(每題4分,共24分)13.一只跳蚤在第一象限及x軸、y軸上跳動,在第一秒鐘,它從原點跳動到(0,1),然后接著按圖中箭頭所示方向跳動[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳動一個單位,那么第35秒時跳蚤所在位置的坐標是__________14.若、是關(guān)于的一元二次方程的兩個根,且,則,,,的大小關(guān)系是_____________.15.化簡:______.16.四邊形ABCD與四邊形位似,點O為位似中心.若,則________.17.在某一個學(xué)校的運動俱樂部里面有三大筐數(shù)量相同的球,甲每次從第一個大筐中取出9個球;乙每次從第二個大筐中取出7個球;丙則是每次從第三個大筐中取出5個球.到后來甲、乙、丙三人都記不清各自取過多少次球了,于是管理人員查看發(fā)現(xiàn)第一個大筐中還剩下7個球,第二個大筐還剩下4個球,第三個大筐還剩下2個球,那么根據(jù)上述情況可以推知甲至少取了______次.18.已知圓錐的底面圓半徑是1,母線是3,則圓錐的側(cè)面積是______.三、解答題(共78分)19.(8分)如圖,在ABC中,點D,E分別在邊AC,AB上,且AE·AB=AD·AC,連接DE,BD.(1)求證:ADE~ABC.(2)若點E為AB為中點,AD:AE=6:5,ABC的面積為50,求BCD面積.20.(8分)若關(guān)于x的方程有兩個相等的實數(shù)根(1)求b的值;(2)當b取正數(shù)時,求此時方程的根,21.(8分)如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,BE⊥AB,垂足為B,BE=CD連接CE,DE.(1)求證:四邊形CDBE是矩形(2)若AC=2,∠ABC=30°,求DE的長22.(10分)定義:已知點是三角形邊上的一點(頂點除外),若它到三角形一條邊的距離等于它到三角形的一個頂點的距離,則我們把點叫做該三角形的等距點.(1)如圖1:中,,,,在斜邊上,且點是的等距點,試求的長;(2)如圖2,中,,點在邊上,,為中點,且.①求證:的外接圓圓心是的等距點;②求的值.23.(10分)如圖,已知直線AB經(jīng)過點(0,4),與拋物線y=x2交于A,B兩點,其中點A的橫坐標是.(1)求這條直線的函數(shù)關(guān)系式及點B的坐標.(2)在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標,若不存在請說明理由.(3)過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當點M的橫坐標為何值時,MN+3MP的長度最大?最大值是多少?24.(10分)“揚州漆器”名揚天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(元)之間存在一次函數(shù)關(guān)系,如圖所示.(1)求與之間的函數(shù)關(guān)系式;(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.25.(12分)如圖,已知均在上,請用無刻度的直尺作圖.如圖1,若點是的中點,試畫出的平分線;如圖2,若.試畫出的平分線.26.解下列方程(1)(2)
參考答案一、選擇題(每題4分,共48分)1、C【解析】由矩形的性質(zhì)得出AB=CD,AB∥CD,∠ABC=∠BCD=90°,由ASA證明△BEF≌△CDF,得出BE=CD=AB,則AE=2AB=2CD,再根據(jù)AOECOD,面積比等于相似比的平方即可。【詳解】∵四邊形ABCD是矩形,
∴AB=CD,AB∥CD,∠ABC=∠BCD=90°,
∴∠EBF=90°,
∵F為BC的中點,
∴BF=CF,
在△BEF和△CDF中,,
∴△BEF≌△CDF(ASA),
∴BE=CD=AB,
∴AE=2AB=2CD,
∵AB∥CD,∴AOECOD,∴=4:1∵∴=8故選:C.本題考查了矩形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì);熟練掌握有關(guān)的性質(zhì)與判定是解決問題的關(guān)鍵.2、B【分析】首先根據(jù)題意畫出圖形,即可得△OBC是等邊三角形,又由正六邊形ABCDEF的周長為6,即可求得BC的長,繼而求得△OBC的面積,則可求得該六邊形的面積.【詳解】解:如圖,連接OB,OC,過O作OM⊥BC于M,∴∠BOC=×360°=60°,∵OB=OC,∴△OBC是等邊三角形,∵正六邊形ABCDEF的周長為6,∴BC=6÷6=1,∴OB=BC=1,∴BM=BC=,∴OM=,∴S△OBC=×BC×OM=,∴該六邊形的面積為:.故選:B.此題考查了圓的內(nèi)接六邊形的性質(zhì)與等邊三角形的判定與性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.3、C【分析】因為方程中可以提取公因式x,所以該方程適合用因式分解法.因式分解為x(x+5)=0,解得x=0或x=-5.用因式分解法解該方程會比較簡單快速.【詳解】解:∵x2+5x=0,∴x(x+5)=0,則x=0或x+5=0,解得:x=0或x=﹣5,故選:C.本題的考點是解一元二次方程.方法是熟記一元二次方程的幾種解法,也可用選項的四種方法分別解題,選擇最便捷的方法.4、B【分析】先證明兩三角形相似,再利用面積比是相似比的平方即可解出.【詳解】∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△ABO∽△DCO,∵AB=1,CD=2,∴△AOB和△DCO相似比為:1:2.∴△AOB和△DCO面積比為:1:4.故選B.本題考查相似三角形的面積比,關(guān)鍵在于牢記面積比和相似比的關(guān)系.5、B【分析】根據(jù)放大鏡成像的特點,結(jié)合各變換的特點即可得出答案.【詳解】解:根據(jù)相似圖形的定義知,用放大鏡將圖形放大,屬于圖形的形狀相同,大小不相同,所以屬于相似變換.故選B.本題考查的是相似形的識別,關(guān)鍵要聯(lián)系圖形,根據(jù)相似圖形的定義得出.6、B【分析】根據(jù)等腰三角形性質(zhì)和三角形內(nèi)角和定理可列出方程求解.【詳解】設(shè)∠A=x.
∵AD=BD,
∴∠ABD=∠A=x;
∵BD=BC,
∴∠BCD=∠BDC=∠ABD+∠A=2x;
∵AB=AC,
∴∠ABC=∠BCD=2x,
∴∠DBC=x;
∵x+2x+2x=180°,
∴x=36°,
∴∠A=36°故選:B考核知識點:等腰三角形性質(zhì).熟練運用等腰三角形基本性質(zhì)是關(guān)鍵.7、C【分析】連接BO,證O是△ABC的內(nèi)心,證△BAO≌△DAO,得∠D=∠ABO,根據(jù)三角形外角性質(zhì)得∠ACO=∠BCO=∠D+∠COD=2∠D,即∠ABC=∠ACO=∠BCO,再推出∠OAD+∠D=180°-138°=42°,得∠BAC+∠ACO=84°,根據(jù)三角形內(nèi)角和定理可得結(jié)果.【詳解】連接BO,由已知可得因為AO,CO平分∠BAC和∠BCA所以O(shè)是△ABC的內(nèi)心所以∠ABO=∠CBO=∠ABC因為AD=AB,OA=OA,∠BAO=∠DAO所以△BAO≌△DAO所以∠D=∠ABO所以∠ABC=2∠ABO=2∠D因為OC=CD所以∠D=∠COD所以∠ACO=∠BCO=∠D+∠COD=2∠D所以∠ABC=∠ACO=∠BCO因為∠AOD=138°所以∠OAD+∠D=180°-138°=42°所以2(∠OAD+∠D)=84°即∠BAC+∠ACO=84°所以∠ABC+∠BCO=180°-(∠BAC+∠ACO)=180°-84°=96°所以∠ABC=96°=48°故選:C考核知識點:三角形的內(nèi)心.利用全等三角形性質(zhì)和角平分線性質(zhì)和三角形內(nèi)外角定理求解是關(guān)鍵.8、C【分析】太陽光線下的影子是平行投影,就北半球而言,從早到晚物體影子的指向是:西-西北-北-東北-東,于是即可得到答案.【詳解】根據(jù)平行投影的規(guī)律以及電線桿從早到晚影子的指向規(guī)律,可知:俯視圖的順序為:④③①②,故選C.本題主要考查平行投影的規(guī)律,掌握“就北半球而言,從早到晚物體影子的指向是:西-西北-北-東北-東”,是解題的關(guān)鍵.9、A【解析】分析:由S△ABC=9、S△A′EF=1且AD為BC邊的中線知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根據(jù)△DA′E∽△DAB知,據(jù)此求解可得.詳解:如圖,∵S△ABC=9、S△A′EF=1,且AD為BC邊的中線,∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,∵將△ABC沿BC邊上的中線AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,則,即,解得A′D=2或A′D=-(舍),故選A.點睛:本題主要平移的性質(zhì),解題的關(guān)鍵是熟練掌握平移變換的性質(zhì)與三角形中線的性質(zhì)、相似三角形的判定與性質(zhì)等知識點.10、B【解析】主視圖是三角形的一定是一個錐體,只有B是錐體.故選B.11、D【解析】二次函數(shù)的頂點式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常數(shù)),它的對稱軸是x=h,頂點坐標是(h,k),據(jù)此進行判斷即可.【詳解】∵﹣1<0,∴函數(shù)的開口向下,圖象有最高點,這個函數(shù)的頂點是(﹣1,2),對稱軸是x=﹣1,∴選項A、B、C錯誤,選項D正確,故選D.本題考查了二次函數(shù)的性質(zhì),熟練掌握拋物線的開口方向,對稱軸,頂點坐標是解題的關(guān)鍵.12、D【分析】首先證明BD=DE=2AD,再由DE∥BC,可得,求出EC即可解決問題.【詳解】解:∵DE∥BC,∴∠DEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DEB=∠DBE,∴DB=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴,∴,∴EC=4,∴AC=AE+EC=2+4=6,故選:D.此題考查平行線分線段成比例,由DE∥BC,可得,求出EC即可解決問題.二、填空題(每題4分,共24分)13、(5,0)【詳解】解:跳蚤運動的速度是每秒運動一個單位長度,(0,0)→(0,1)→(1,1)→(1,0)用的秒數(shù)分別是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此類推,到(5,0)用35秒.故第35秒時跳蚤所在位置的坐標是(5,0).14、【分析】根據(jù)題意和二次函數(shù)性質(zhì),可以判斷出的大小關(guān)系,本題得以解決.【詳解】令,則該函數(shù)的圖象開口向上,
當時,,
當時,
,
即,
∵是關(guān)于的方程的兩根,且,
∴,
故答案為:.本題考查了拋物線與x軸的交點、二次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.15、【分析】根據(jù)向量的加減法法則計算即可.【詳解】解:-=.本題考查了向量的加減法,掌握運算法則是關(guān)鍵.16、1∶3【解析】根據(jù)四邊形ABCD與四邊形位似,,可知位似比為1:3,即可得相似比為1:3,即可得答案.【詳解】∵四邊形與四邊形位似,點為位似中心.,∴四邊形與四邊形的位似比是1∶3,∴四邊形與四邊形的相似比是1∶3,∴AB∶OA∶OA′=1∶3,故答案為1∶3.本題考查了位似的相關(guān)知識,位似是相似的特殊形式,位似比等于相似比,其對應(yīng)的面積比等于相似比的平方.17、2【分析】設(shè)每框球的總數(shù)為k,甲取了a次,乙取了b次,丙取了c次.根據(jù)題意得可列方程k=9a+7=7b+4=5c+2(k,a,b,c都是正整數(shù)),然后根據(jù)整除的性質(zhì)解答即可.【詳解】設(shè)每框球的總數(shù)為k,甲取了a次,乙取了b次,丙取了c次.根據(jù)題意得:k=9a+7=7b+4=5c+2(k,a,b,c都是正整數(shù))∴9a+7=5c+2,∴9a=5(c-1),∴a是5的倍數(shù).不妨設(shè)a=5m(m為正整數(shù)),∴k=45m+7=7b+4,∴b=,∵b和m都是正整數(shù),∴m的最小值為1.∴a=5m=2.故答案為:2.本題考查了三元一次方程的應(yīng)用,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的者方程,會根據(jù)整除性進一步設(shè)未知數(shù).18、3π.【解析】∵圓錐的底面圓半徑是1,∴圓錐的底面圓的周長=2π,則圓錐的側(cè)面積=×2π×3=3π,故答案為3π.三、解答題(共78分)19、(1)詳見解析;(2)14【分析】(1)根據(jù)可得,又因,由相似三角形的判定定理即可證;(2)設(shè),根據(jù)得,由點E是AB的中點得,可求出的值,根據(jù)相似三角形的面積比等于對應(yīng)邊的比的平方可得的面積,因等底等高得,的面積等于的面積,從而可得答案.【詳解】(1)在和中,(兩邊對應(yīng)成比例且夾角相等的三角形相似)(2)設(shè)又點E是AB的中點由題(1)知又又和的邊,且邊上對應(yīng)的高是同一條高答:的面積為14.本題考查了相似三角形的判定定理和性質(zhì),熟記判定定理和性質(zhì)是解題關(guān)鍵.20、(1)b=2或b=;(2)x1=x2=2;【分析】(1)根據(jù)根的判別式即可求出答案.(2)由(1)可知b=2,根據(jù)一元二次方程的解法即可求出答案.【詳解】解:(1)由題意可知:△=(b+2)2-4(6-b)=0,∴解得:b=2或b=.(2)當b=2時,此時x2-4x+4=0,∴,∴x1=x2=2;本題考查一元二次方程,解題的關(guān)鍵是熟練運用一元二次方程的解法,本題屬于基礎(chǔ)題型.21、(1)見詳解,(2)DE=2【解析】(1)利用有一組對邊平行且相等的四邊形是平行四邊形,有一個角是90°的平行四邊形是矩形即可證明,(2)利用30°角所對直角邊是斜邊的一半和勾股定理即可解題.【詳解】解:(1)∵CD⊥AB,BE⊥AB,∴CD∥BE,∵BE=CD,∴四邊形CDBE是矩形,(2)在Rt△ABC中,∵∠ABC=30°,AC=2,∴AB=4,(30°角所對直角邊是斜邊的一半)∴DE=BC=2(勾股定理)本題考查了矩形的證明和特殊直角三角形的性質(zhì),屬于簡單題,熟悉判定方法是解題關(guān)鍵.22、(1)或;(2)①證明見解析,②.【分析】(1)根據(jù)三角形的等距點的定義得出OB=OE或OA=OF,利用相似三角形,表達出對應(yīng)邊,列出方程求解即可;(2)①由△CPD為直角三角形,作出外接圓,通過平行線分線段成比例得出DP∥OB,進而證明△CBO≌△PBO,最后推出OP為點O到AB的距離,從而證明點O是△ABC的等距點;(2)求相當于求,由①可得△APO為直角三角,通過勾股定理計算出BC的長度,從而求出.【詳解】解:(1)如圖所示,作OF⊥BC于點F,作OE⊥AC于點E,則△OBF∽△ABC,∴∵,,由勾股定理可得AB=5,設(shè)OB=x,則∴,∵點是的等距點,若OB=OE,∴解得:若OA=OF,OA=5-x∴,解得故OB的值為或(2)①證明:∵△CDP是直角三角形,所以取CD中點O,作出△CDP的外接圓,連接OP,OB設(shè)圓O的半徑為r,則DC=2r,∵D是AC中點,∴OA=3r∴,又∵PA=2PB,∴AB=3PB∴∴∴∠ODP=∠COB,∠OPD=∠POB又∵∠ODP=∠OPD,∴∠COB=∠POB,在△CBO與△PBO中,,∴△CBO≌△PBO(SAS)∴∠OCB=∠OPB=90°,∴OP⊥AB,即OP為點O到AB的距離,又∵OP=OC,∴△CPD的外接圓圓心O是△ABC的等距點②由①可知,△OPA為直角三角形,且∠PDC=∠BOC,OC=OP=r∵在Rt△OPA中,OA=3r,∴,∴∴在Rt△ABC中,AC=4r,,∴,∴本題考查了幾何中的新定義問題,涉及了相似三角形的判定和性質(zhì),直角三角形的性質(zhì),圓的性質(zhì)及三角函數(shù)的內(nèi)容,范圍較大,綜合性較強,解題的關(guān)鍵是明確題中的新定義,并靈活根據(jù)幾何知識作出解答.23、(1)直線y=x+4,點B的坐標為(8,16);(2)點C的坐標為(﹣,0),(0,0),(6,0),(32,0);(3)當M的橫坐標為6時,MN+3PM的長度的最大值是1.【解析】(1)首先求得點A的坐標,然后利用待定系數(shù)法確定直線的解析式,從而求得直線與拋物線的交點坐標;(2)分若∠BAC=90°,則AB2+AC2=BC2;若∠ACB=90°,則AB2=AC2+BC2;若∠ABC=90°,則AB2+BC2=AC2三種情況求得m的值,從而確定點C的坐標;(3)設(shè)M(a,a2),得MN=a2+1,然后根據(jù)點P與點M縱坐標相同得到x=,從而得到MN+3PM=﹣a2+3a+9,確定二次函數(shù)的最值即可.【詳解】(1)∵點A是直線與拋物線的交點,且橫坐標為-2,,A點的坐標為(-2,1),設(shè)直線的函數(shù)關(guān)系式為y=kx+b,將(0,4),(-2,1)代入得解得∴y=x+4∵直線與拋物線相交,解得:x=-2或x=8,
當x=8時,y=16,
∴點B的坐標為(8,16);(2)存在.∵由A(-2,1),B(8,16)可求得AB2==325.設(shè)點C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m-8)2+162=m2-16m+320,①若∠BAC=90°,則AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-;②若∠ACB=90°,則AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;③若∠ABC=90°,則AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,∴點C的坐標為(-,0),(0,0),(6,0),(32,0)(3)設(shè)M(a,a2),則MN=,又∵點P與點M縱坐標相同,∴x+4=a2,∴x=,∴點P的橫坐標為,∴MP=a-,∴MN+3PM=a2+1+3(a-)=-a2+3a+9=-(a-6)2+1,∵-2≤6≤8,∴當a=6時,取最大值1,∴當M的橫坐標為6時,MN+3PM的長度的最大值是124、(1);(2)單價為46元時,利潤最大為3840元.(3)單價的范圍是45元
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 保健調(diào)理師測試驗證考核試卷含答案
- 鍋爐操作工安全宣貫知識考核試卷含答案
- 汽機本體檢修工安全檢查競賽考核試卷含答案
- 中藥酒(酊)劑工崗前管理綜合考核試卷含答案
- 陶瓷施釉工崗前技能考核試卷含答案
- 乳品濃縮工崗前工作水平考核試卷含答案
- 給體育老師的請假條格式
- 2025年金屬非切削、成形加工機械項目合作計劃書
- 2025年村用風(fēng)油互補發(fā)電系統(tǒng)控制器及逆變器項目發(fā)展計劃
- 2025年電氣、電子設(shè)備用玻璃部件相關(guān)工業(yè)品用玻璃部件項目合作計劃書
- 酒店清欠協(xié)議書模板模板
- 2025沈陽市消防救援支隊政府專職消防員招聘160人考試備考試題及答案解析
- 鐵路鐵鞋管理辦法
- 安防監(jiān)控系統(tǒng)維護與管理方案
- 2025屆重慶八中學(xué)七上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析
- 2025年廣東省中考語文試卷真題(含答案解析)
- 燙熨治療法講課件
- 2025至2030中國模塊化變電站行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 電廠清潔生產(chǎn)管理制度
- 2025年江蘇省事業(yè)單位招聘考試教師招聘體育學(xué)科專業(yè)知識試題
- 機械設(shè)計年終述職報告
評論
0/150
提交評論