遼寧省大連協(xié)作校2026屆中考考前最后一卷數(shù)學(xué)試卷含解析_第1頁
遼寧省大連協(xié)作校2026屆中考考前最后一卷數(shù)學(xué)試卷含解析_第2頁
遼寧省大連協(xié)作校2026屆中考考前最后一卷數(shù)學(xué)試卷含解析_第3頁
遼寧省大連協(xié)作校2026屆中考考前最后一卷數(shù)學(xué)試卷含解析_第4頁
遼寧省大連協(xié)作校2026屆中考考前最后一卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

遼寧省大連協(xié)作校2026屆中考考前最后一卷數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.鄭州地鐵Ⅰ號線火車站站口分布如圖所示,有A,B,C,D,E五個進(jìn)出口,小明要從這里乘坐地鐵去新鄭機(jī)場,回來后仍從這里出站,則他恰好選擇從同一個口進(jìn)出的概率是()A. B. C. D.2.如圖,已知邊長為2的正三角形ABC頂點(diǎn)A的坐標(biāo)為(0,6),BC的中點(diǎn)D在y軸上,且在點(diǎn)A下方,點(diǎn)E是邊長為2、中心在原點(diǎn)的正六邊形的一個頂點(diǎn),把這個正六邊形繞中心旋轉(zhuǎn)一周,在此過程中DE的最小值為()A.3 B.4﹣ C.4 D.6﹣23.設(shè)x1,x2是方程x2-2x-1=0的兩個實(shí)數(shù)根,則的值是()A.-6 B.-5 C.-6或-5 D.6或54.某市2010年元旦這天的最高氣溫是8℃,最低氣溫是﹣2℃,則這天的最高氣溫比最低氣溫高()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃5.下列基本幾何體中,三視圖都是相同圖形的是()A. B. C. D.6.如圖,在已知的△ABC中,按以下步驟作圖:①分別以B、C為圓心,以大于BC的長為半徑作弧,兩弧相交于點(diǎn)M、N;②作直線MN交AB于點(diǎn)D,連接CD,則下列結(jié)論正確的是()A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB7.如圖圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.8.已知在一個不透明的口袋中有4個形狀、大小、材質(zhì)完全相同的球,其中1個紅色球,3個黃色球.從口袋中隨機(jī)取出一個球(不放回),接著再取出一個球,則取出的兩個都是黃色球的概率為()A.34 B.23 C.99.在△ABC中,AB=3,BC=4,AC=2,D,E,F(xiàn)分別為AB,BC,AC中點(diǎn),連接DF,F(xiàn)E,則四邊形DBEF的周長是(

)A.5 B.7 C.9 D.1110.如圖所示,數(shù)軸上兩點(diǎn)A,B分別表示實(shí)數(shù)a,b,則下列四個數(shù)中最大的一個數(shù)是(

)A.a(chǎn)

B.b

C. D.11.如圖,在平面直角坐標(biāo)系中,△ABC位于第二象限,點(diǎn)B的坐標(biāo)是(﹣5,2),先把△ABC向右平移4個單位長度得到△A1B1C1,再作與△A1B1C1關(guān)于于x軸對稱的△A2B2C2,則點(diǎn)B的對應(yīng)點(diǎn)B2的坐標(biāo)是()A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)12.如圖,在矩形ABCD中,AB=2,BC=1.若點(diǎn)E是邊CD的中點(diǎn),連接AE,過點(diǎn)B作BF⊥AE交AE于點(diǎn)F,則BF的長為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在平面直角坐標(biāo)系中,將矩形AOCD沿直線AE折疊(點(diǎn)E在邊DC上),折疊后頂點(diǎn)D恰好落在邊OC上的點(diǎn)F處.若點(diǎn)D的坐標(biāo)為(10,8),則點(diǎn)E的坐標(biāo)為.14.一組數(shù)據(jù)10,10,9,8,x的平均數(shù)是9,則這列數(shù)據(jù)的極差是_____.15.不透明袋子中裝有個球,其中有個紅球、個綠球和個黑球,這些球除顏色外無其他差別.從袋子中隨機(jī)取出個球,則它是黑球的概率是_____.16.如圖,菱形OABC的一邊OA在x軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C,與AB交于點(diǎn)D,若△COD的面積為20,則k的值等于_____________.17.若從-3,-1,0,1,3這五個數(shù)中隨機(jī)抽取一個數(shù)記為a,再從剩下的四個數(shù)中任意抽取一個數(shù)記為b,恰好使關(guān)于x,y的二元一次方程組有整數(shù)解,且點(diǎn)(a,b)落在雙曲線上的概率是_________.18.已知點(diǎn)P是線段AB的黃金分割點(diǎn),PA>PB,AB=4cm,則PA=____cm.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)先化簡,再求值:,其中x滿足x2﹣x﹣1=1.20.(6分)如圖,二次函數(shù)的圖象與x軸的一個交點(diǎn)為,另一個交點(diǎn)為A,且與y軸相交于C點(diǎn)求m的值及C點(diǎn)坐標(biāo);在直線BC上方的拋物線上是否存在一點(diǎn)M,使得它與B,C兩點(diǎn)構(gòu)成的三角形面積最大,若存在,求出此時M點(diǎn)坐標(biāo);若不存在,請簡要說明理由為拋物線上一點(diǎn),它關(guān)于直線BC的對稱點(diǎn)為Q當(dāng)四邊形PBQC為菱形時,求點(diǎn)P的坐標(biāo);點(diǎn)P的橫坐標(biāo)為,當(dāng)t為何值時,四邊形PBQC的面積最大,請說明理由.21.(6分)如圖,以D為頂點(diǎn)的拋物線y=﹣x2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,直線BC的表達(dá)式為y=﹣x+1.求拋物線的表達(dá)式;在直線BC上有一點(diǎn)P,使PO+PA的值最小,求點(diǎn)P的坐標(biāo);在x軸上是否存在一點(diǎn)Q,使得以A、C、Q為頂點(diǎn)的三角形與△BCD相似?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.22.(8分)2019年我市在“展銷會”期間,對周邊道路進(jìn)行限速行駛.道路AB段為監(jiān)測區(qū),C、D為監(jiān)測點(diǎn)(如圖).已知C、D、B在同一條直線上,且,CD=400米,,.求道路AB段的長;(精確到1米)如果AB段限速為60千米/時,一輛車通過AB段的時間為90秒,請判斷該車是否超速,并說明理由.(參考數(shù)據(jù):,,)23.(8分)關(guān)于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有兩個實(shí)數(shù)根.求m的取值范圍;若m為正整數(shù),求此方程的根.24.(10分)學(xué)習(xí)了正多邊形之后,小馬同學(xué)發(fā)現(xiàn)利用對稱、旋轉(zhuǎn)等方法可以計(jì)算等分正多邊形面積的方案.(1)請聰明的你將下面圖①、圖②、圖③的等邊三角形分別割成2個、3個、4個全等三角形;(2)如圖④,等邊△ABC邊長AB=4,點(diǎn)O為它的外心,點(diǎn)M、N分別為邊AB、BC上的動點(diǎn)(不與端點(diǎn)重合),且∠MON=120°,若四邊形BMON的面積為s,它的周長記為l,求最小值;(3)如圖⑤,等邊△ABC的邊長AB=4,點(diǎn)P為邊CA延長線上一點(diǎn),點(diǎn)Q為邊AB延長線上一點(diǎn),點(diǎn)D為BC邊中點(diǎn),且∠PDQ=120°,若PA=x,請用含x的代數(shù)式表示△BDQ的面積S△BDQ.25.(10分)如圖,在中,是的中點(diǎn),過點(diǎn)的直線交于點(diǎn),交的平行線于點(diǎn),交于點(diǎn),連接、.求證:;請你判斷與的大小關(guān)系,并說明理由.26.(12分)瑞安市曹村鎮(zhèn)“八百年燈會”成為溫州“申遺”的寶貴項(xiàng)目.某公司生產(chǎn)了一種紀(jì)念花燈,每件紀(jì)念花燈制造成本為18元.設(shè)銷售單價x(元),每日銷售量y(件)每日的利潤w(元).在試銷過程中,每日銷售量y(件)、每日的利潤w(元)與銷售單價x(元)之間存在一定的關(guān)系,其幾組對應(yīng)量如下表所示:(元)19202130(件)62605840(1)根據(jù)表中數(shù)據(jù)的規(guī)律,分別寫出毎日銷售量y(件),每日的利潤w(元)關(guān)于銷售單價x(元)之間的函數(shù)表達(dá)式.(利潤=(銷售單價﹣成本單價)×銷售件數(shù)).當(dāng)銷售單價為多少元時,公司每日能夠獲得最大利潤?最大利潤是多少?根據(jù)物價局規(guī)定,這種紀(jì)念品的銷售單價不得高于32元,如果公司要獲得每日不低于350元的利潤,那么制造這種紀(jì)念花燈每日的最低制造成本需要多少元?27.(12分)為了解某校學(xué)生的課余興趣愛好情況,某調(diào)查小組設(shè)計(jì)了“閱讀”、“打球”、“書法”和“舞蹈”四個選項(xiàng),用隨機(jī)抽樣的方法調(diào)查了該校部分學(xué)生的課余興趣愛好情況(每個學(xué)生必須選一項(xiàng)且只能選一項(xiàng)),并根據(jù)調(diào)查結(jié)果繪制了如圖統(tǒng)計(jì)圖:根據(jù)統(tǒng)計(jì)圖所提供的倍息,解答下列問題:(1)本次抽樣調(diào)查中的學(xué)生人數(shù)是多少人;(2)補(bǔ)全條形統(tǒng)計(jì)圖;(3)若該校共有2000名學(xué)生,請根據(jù)統(tǒng)計(jì)結(jié)果估計(jì)該校課余興趣愛好為“打球”的學(xué)生人數(shù);(4)現(xiàn)有愛好舞蹈的兩名男生兩名女生想?yún)⒓游璧干?,但只能選兩名學(xué)生,請你用列表或畫樹狀圖的方法,求出正好選到一男一女的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】

列表得出進(jìn)出的所有情況,再從中確定出恰好選擇從同一個口進(jìn)出的結(jié)果數(shù),繼而根據(jù)概率公式計(jì)算可得.【詳解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE∴一共有25種等可能的情況,恰好選擇從同一個口進(jìn)出的有5種情況,∴恰好選擇從同一個口進(jìn)出的概率為=,故選C.【點(diǎn)睛】此題主要考查了列表法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.2、B【解析】分析:首先得到當(dāng)點(diǎn)E旋轉(zhuǎn)至y軸上時DE最小,然后分別求得AD、OE′的長,最后求得DE′的長即可.詳解:如圖,當(dāng)點(diǎn)E旋轉(zhuǎn)至y軸上時DE最?。弧摺鰽BC是等邊三角形,D為BC的中點(diǎn),∴AD⊥BC∵AB=BC=2∴AD=AB?sin∠B=,∵正六邊形的邊長等于其半徑,正六邊形的邊長為2,∴OE=OE′=2∵點(diǎn)A的坐標(biāo)為(0,6)∴OA=6∴DE′=OA-AD-OE′=4-故選B.點(diǎn)睛:本題考查了正多邊形的計(jì)算及等邊三角形的性質(zhì),解題的關(guān)鍵是從圖形中整理出直角三角形.3、A【解析】試題解析:∵x1,x2是方程x2-2x-1=0的兩個實(shí)數(shù)根,∴x1+x2=2,x1?x2=-1∴=.故選A.4、A【解析】

用最高氣溫減去最低氣溫,再根據(jù)有理數(shù)的減法運(yùn)算法則“減去一個數(shù)等于加上這個數(shù)的相反數(shù)”即可求得答案.【詳解】8-(-2)=8+2=10℃.即這天的最高氣溫比最低氣溫高10℃.故選A.5、C【解析】

根據(jù)主視圖、左視圖、俯視圖的定義,可得答案.【詳解】球的三視圖都是圓,故選C.【點(diǎn)睛】本題考查了簡單幾何體的三視圖,熟記特殊幾何體的三視圖是解題關(guān)鍵.6、B【解析】

作弧后可知MN⊥CB,且CD=DB.【詳解】由題意性質(zhì)可知MN是BC的垂直平分線,則MN⊥CB,且CD=DB,則CD+AD=AB.【點(diǎn)睛】了解中垂線的作圖規(guī)則是解題的關(guān)鍵.7、B【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A不正確;B、既是軸對稱圖形,又是中心對稱圖形,故B正確;C、是軸對稱圖形,不是中心對稱圖形,故C不正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D不正確.故選B.【點(diǎn)睛】本題考查了軸對稱圖形和中心對稱圖形的概念,以及對軸對稱圖形和中心對稱圖形的認(rèn)識.8、D【解析】試題分析:列舉出所有情況,看取出的兩個都是黃色球的情況數(shù)占總情況數(shù)的多少即可.試題解析:畫樹狀圖如下:共有12種情況,取出2個都是黃色的情況數(shù)有6種,所以概率為12故選D.考點(diǎn):列表法與樹狀法.9、B【解析】試題解析:∵D、E、F分別為AB、BC、AC中點(diǎn),∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四邊形DBEF為平行四邊形,∴四邊形DBEF的周長=2(DF+EF)=2×(2+)=1.故選B.10、D【解析】

∵負(fù)數(shù)小于正數(shù),在(0,1)上的實(shí)數(shù)的倒數(shù)比實(shí)數(shù)本身大.∴<a<b<,故選D.11、D【解析】

首先利用平移的性質(zhì)得到△A1B1C1中點(diǎn)B的對應(yīng)點(diǎn)B1坐標(biāo),進(jìn)而利用關(guān)于x軸對稱點(diǎn)的性質(zhì)得到△A2B2C2中B2的坐標(biāo),即可得出答案.【詳解】解:把△ABC向右平移4個單位長度得到△A1B1C1,此時點(diǎn)B(-5,2)的對應(yīng)點(diǎn)B1坐標(biāo)為(-1,2),則與△A1B1C1關(guān)于于x軸對稱的△A2B2C2中B2的坐標(biāo)為(-1,-2),故選D.【點(diǎn)睛】此題主要考查了平移變換以及軸對稱變換,正確掌握變換規(guī)律是解題關(guān)鍵.12、B【解析】

根據(jù)S△ABE=S矩形ABCD=1=?AE?BF,先求出AE,再求出BF即可.【詳解】如圖,連接BE.∵四邊形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=1=?AE?BF,∴BF=.故選:B.【點(diǎn)睛】本題考查矩形的性質(zhì)、勾股定理、三角形的面積公式等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,學(xué)會用面積法解決有關(guān)線段問題,屬于中考??碱}型.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(10,3)【解析】

根據(jù)折疊的性質(zhì)得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后設(shè)EC=x,則EF=DE=8-x,CF=10-6=4,根據(jù)勾股定理列方程求出EC可得點(diǎn)E的坐標(biāo).【詳解】∵四邊形AOCD為矩形,D的坐標(biāo)為(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE折疊,使D落在BC上的點(diǎn)F處,∴AD=AF=10,DE=EF,在Rt△AOF中,OF==6,∴FC=10?6=4,設(shè)EC=x,則DE=EF=8?x,在Rt△CEF中,EF2=EC2+FC2,即(8?x)2=x2+42,解得x=3,即EC的長為3.∴點(diǎn)E的坐標(biāo)為(10,3).14、1【解析】

先根據(jù)平均數(shù)求出x,再根據(jù)極差定義可得答案.【詳解】由題意知=9,解得:x=8,∴這列數(shù)據(jù)的極差是10-8=1,故答案為1.【點(diǎn)睛】本題主要考查平均數(shù)和極差,熟練掌握平均數(shù)的計(jì)算得出x的值是解題的關(guān)鍵.15、【解析】

一般方法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.根據(jù)隨機(jī)事件概率大小的求法,找準(zhǔn)兩點(diǎn):①符合條件的情況數(shù)目,②全部情況的總數(shù),二者的比值就是其發(fā)生的概率的大小.【詳解】∵不透明袋子中裝有7個球,其中有2個紅球、2個綠球和3個黑球,∴從袋子中隨機(jī)取出1個球,則它是黑球的概率是:故答案為:.【點(diǎn)睛】本題主要考查概率的求法與運(yùn)用,解決本題的關(guān)鍵是要熟練掌握概率的定義和求概率的公式.16、﹣24【解析】分析:如下圖,過點(diǎn)C作CF⊥AO于點(diǎn)F,過點(diǎn)D作DE∥OA交CO于點(diǎn)E,設(shè)CF=4x,由tan∠AOC=可得OF=3x,由此可得OC=5x,從而可得OA=5x,由已知條件易證S菱形ABCO=2S△COD=40=OA·CF=20x2,從而可得x=,由此可得點(diǎn)C的坐標(biāo)為,這樣由點(diǎn)C在反比例函數(shù)的圖象上即可得到k=-24.詳解:如下圖,過點(diǎn)C作CF⊥AO于點(diǎn)F,過點(diǎn)D作DE∥OA交CO于點(diǎn)E,設(shè)CF=4x,∵四邊形ABCO是菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴四邊形AOED和四邊形DECB都是平行四邊形,∴S△AOD=S△DOE,S△BCD=S△CDE,∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,∵tan∠AOC=,CF=4x,∴OF=3x,∴在Rt△COF中,由勾股定理可得OC=5x,∴OA==OC=5x,∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,∴OF=,CF=,∴點(diǎn)C的坐標(biāo)為,∵點(diǎn)C在反比例函數(shù)的圖象上,∴k=.故答案為:-24.點(diǎn)睛:本題的解題要點(diǎn)有兩點(diǎn):(1)作出如圖所示的輔助線,設(shè)CF=4x,結(jié)合已知條件把OF和OA用含x的式子表達(dá)出來;(2)由四邊形AOCB是菱形,點(diǎn)D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.17、【解析】分析:根據(jù)題意可以寫出所有的可能性,然后將所有的可能性代入方程組和雙曲線,找出符號要求的可能性,從而可以解答本題.詳解:從﹣3,﹣1,0,1,3這五個數(shù)中隨機(jī)抽取一個數(shù)記為a,再從剩下的四個數(shù)中任意抽取一個數(shù)記為b,則(a,b)的所有可能性是:(﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、(﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、(0,﹣3)、(0,﹣1)、(0,1)、(0,3)、(1,﹣3)、(1,﹣1)、(1,0)、(1,3)、(3,﹣3)、(3,﹣1)、(3,0)、(3,1),將上面所有的可能性分別代入關(guān)于x,y的二元一次方程組有整數(shù)解,且點(diǎn)(a,b)落在雙曲線上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使關(guān)于x,y的二元一次方程組有整數(shù)解,且點(diǎn)(a,b)落在雙曲線上的概率是:.故答案為.點(diǎn)睛:本題考查了列表法與樹狀圖法,解題的關(guān)鍵是明確題意,寫出所有的可能性.18、2-2【解析】

根據(jù)黃金分割點(diǎn)的定義,知AP是較長線段;則AP=AB,代入運(yùn)算即可.【詳解】解:由于P為線段AB=4的黃金分割點(diǎn),且AP是較長線段;則AP=4×=cm,故答案為:(2-2)cm.【點(diǎn)睛】此題考查了黃金分割的定義,應(yīng)該識記黃金分割的公式:較短的線段=原線段的,難度一般.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、2.【解析】

根據(jù)分式的運(yùn)算法則進(jìn)行計(jì)算化簡,再將x2=x+2代入即可.【詳解】解:原式=×=×=,∵x2﹣x﹣2=2,∴x2=x+2,∴==2.20、,;存在,;或;當(dāng)時,.【解析】

(1)用待定系數(shù)法求出拋物線解析式;(2)先判斷出面積最大時,平移直線BC的直線和拋物線只有一個交點(diǎn),從而求出點(diǎn)M坐標(biāo);(3)①先判斷出四邊形PBQC時菱形時,點(diǎn)P是線段BC的垂直平分線,利用該特殊性建立方程求解;②先求出四邊形PBCQ的面積與t的函數(shù)關(guān)系式,從而確定出它的最大值.【詳解】解:(1)將B(4,0)代入,解得,m=4,∴二次函數(shù)解析式為,令x=0,得y=4,∴C(0,4);(2)存在,理由:∵B(4,0),C(0,4),∴直線BC解析式為y=﹣x+4,當(dāng)直線BC向上平移b單位后和拋物線只有一個公共點(diǎn)時,△MBC面積最大,∴,∴,∴△=1﹣4b=0,∴b=4,∴,∴M(2,6);(3)①如圖,∵點(diǎn)P在拋物線上,∴設(shè)P(m,),當(dāng)四邊形PBQC是菱形時,點(diǎn)P在線段BC的垂直平分線上,∵B(4,0),C(0,4),∴線段BC的垂直平分線的解析式為y=x,∴m=,∴m=,∴P(,)或P(,);②如圖,設(shè)點(diǎn)P(t,),過點(diǎn)P作y軸的平行線l,過點(diǎn)C作l的垂線,∵點(diǎn)D在直線BC上,∴D(t,﹣t+4),∵PD=﹣(﹣t+4)=,BE+CF=4,∴S四邊形PBQC=2S△PDC=2(S△PCD+S△BD)=2(PD×CF+PD×BE)=4PD=∵0<t<4,∴當(dāng)t=2時,S四邊形PBQC最大=1.考點(diǎn):二次函數(shù)綜合題;二次函數(shù)的最值;最值問題;分類討論;壓軸題.21、(1)y=﹣x2+2x+1;(2)P(,);(1)當(dāng)Q的坐標(biāo)為(0,0)或(9,0)時,以A、C、Q為頂點(diǎn)的三角形與△BCD相似.【解析】

(1)先求得點(diǎn)B和點(diǎn)C的坐標(biāo),然后將點(diǎn)B和點(diǎn)C的坐標(biāo)代入拋物線的解析式得到關(guān)于b、c的方程,從而可求得b、c的值;(2)作點(diǎn)O關(guān)于BC的對稱點(diǎn)O′,則O′(1,1),則OP+AP的最小值為AO′的長,然后求得AO′的解析式,最后可求得點(diǎn)P的坐標(biāo);(1)先求得點(diǎn)D的坐標(biāo),然后求得CD、BC、BD的長,依據(jù)勾股定理的逆定理證明△BCD為直角三角形,然后分為△AQC∽△DCB和△ACQ∽△DCB兩種情況求解即可.【詳解】(1)把x=0代入y=﹣x+1,得:y=1,∴C(0,1).把y=0代入y=﹣x+1得:x=1,∴B(1,0),A(﹣1,0).將C(0,1)、B(1,0)代入y=﹣x2+bx+c得:,解得b=2,c=1.∴拋物線的解析式為y=﹣x2+2x+1.(2)如圖所示:作點(diǎn)O關(guān)于BC的對稱點(diǎn)O′,則O′(1,1).∵O′與O關(guān)于BC對稱,∴PO=PO′.∴OP+AP=O′P+AP≤AO′.∴OP+AP的最小值=O′A==2.O′A的方程為y=P點(diǎn)滿足解得:所以P(,)(1)y=﹣x2+2x+1=﹣(x﹣1)2+4,∴D(1,4).又∵C(0,1,B(1,0),∴CD=,BC=1,DB=2.∴CD2+CB2=BD2,∴∠DCB=90°.∵A(﹣1,0),C(0,1),∴OA=1,CO=1.∴.又∵∠AOC=DCB=90°,∴△AOC∽△DCB.∴當(dāng)Q的坐標(biāo)為(0,0)時,△AQC∽△DCB.如圖所示:連接AC,過點(diǎn)C作CQ⊥AC,交x軸與點(diǎn)Q.∵△ACQ為直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽△DCB.∴,即,解得:AQ=3.∴Q(9,0).綜上所述,當(dāng)Q的坐標(biāo)為(0,0)或(9,0)時,以A、C、Q為頂點(diǎn)的三角形與△BCD相似.【點(diǎn)睛】本題考查了二次函數(shù)的綜合應(yīng)用,解題的關(guān)鍵是掌握待定系數(shù)法求二次函數(shù)的解析式、軸對稱圖形的性質(zhì)、相似三角形的性質(zhì)和判定,分類討論的思想.22、(1)AB≈1395米;(2)沒有超速.【解析】

(1)先根據(jù)tan∠ADC=2求出AC,再根據(jù)∠ABC=35°結(jié)合正弦值求解即可(2)根據(jù)速度的計(jì)算公式求解即可.【詳解】解:(1)∵AC⊥BC,∴∠C=90°,∵tan∠ADC==2,∵CD=400,∴AC=800,在Rt△ABC中,∵∠ABC=35°,AC=800,∴AB==≈1395米;(2)∵AB=1395,∴該車的速度==55.8km/h<60千米/時,故沒有超速.【點(diǎn)睛】此題重點(diǎn)考察學(xué)生對三角函數(shù)值的實(shí)際應(yīng)用,熟練掌握三角函數(shù)值的實(shí)際應(yīng)用是解題的關(guān)鍵.23、(1)且;(2),.【解析】

(1)根據(jù)一元二次方程的定義和判別式的意義得到m≠0且≥0,然后求出兩個不等式的公共部分即可;

(2)利用m的范圍可確定m=1,則原方程化為x2+x=0,然后利用因式分解法解方程.【詳解】(1)∵.解得且.(2)∵為正整數(shù),∴.∴原方程為.解得,.【點(diǎn)睛】考查一元二次方程根的判別式,當(dāng)時,方程有兩個不相等的實(shí)數(shù)根.當(dāng)時,方程有兩個相等的實(shí)數(shù)根.當(dāng)時,方程沒有實(shí)數(shù)根.24、(1)詳見解析;(2)2+2;(3)S△BDQx+.【解析】

(1)根據(jù)要求利用全等三角形的判定和性質(zhì)畫出圖形即可.(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.證明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四邊形BMON=S四邊形BEOF=定值,證明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因?yàn)閘=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因?yàn)镺M=ON,根據(jù)垂線段最短可知,當(dāng)OM與OE重合時,OM定值最小,由此即可解決問題.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.證明△PDF≌△QDE(ASA),即可解決問題.【詳解】解:(1)如圖1,作一邊上的中線可分割成2個全等三角形,如圖2,連接外心和各頂點(diǎn)的線段可分割成3個全等三角形,如圖3,連接各邊的中點(diǎn)可分割成4個全等三角形,(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.∵△ABC是等邊三角形,O是外心,∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,∴OE=OF,∵∠OEB=∠OFB=90°,∴∠EOF+∠EBF=180°,∴∠EOF=∠NOM=120°,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴EM=FN,ON=OM,S△EOM=S△NOF,∴S四邊形BMON=S四邊形BEOF=定值,∵OB=OB,OE=OF,∠OEB=∠OFB=90°,∴Rt△OBE≌Rt△OBF(HL),∴BE=BF,∴BM+BN=BE+EM+BF﹣FN=2BE=定值,∴欲求最小值,只要求出l的最小值,∵l=BM+BN+ON+OM=定值+ON+OM,欲求最小值,只要求出ON+OM的最小值,∵OM=ON,根據(jù)垂線段最短可知,當(dāng)OM與OE重合時,OM定值最小,此時定值最小,s=×2×=,l=2+2++=4+,∴的最小值==2+2.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.∵△ABC是等邊三角形,BD=DC,∴AD平分∠BAC,∵DE⊥AB,DF⊥AC,∴DE=DF,∵∠DEA=∠DEQ=∠AFD=90°,∴∠EAF+∠EDF=180°,∵∠EAF=60°,∴∠EDF=∠PDQ=120°,∴∠PDF=∠QDE,∴△PDF≌△QDE(ASA),∴PF=EQ,在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,∴CF=CD=1,DF=,同法可得:BE=1,DE=DF=,∵AF=AC﹣CF=4﹣1=3,PA=x,∴PF=EQ=3+x,∴BQ=EQ﹣BE=2+x,∴S△BDQ=?BQ?DE=×(2+x)×=x+.【點(diǎn)睛】本題主要考查多邊形的綜合題,主要涉及的知識點(diǎn):全等三角形的判定和性質(zhì)、多邊形內(nèi)角和、角平分線的性質(zhì)、等量代換、三角形的面積等,牢記并熟練運(yùn)用這些知識點(diǎn)是解此類綜合題的關(guān)鍵。25、(1)證明見解析;(2)證明見解析.【解析】

(1)利用平行線的性質(zhì)和中點(diǎn)的定義得到,進(jìn)而得到三角形全等,從而求證結(jié)論;(2)利用中垂線的性質(zhì)和三角形的三邊關(guān)系進(jìn)行判斷即可.【詳解】證明:(1)∵BG∥AC∴∵是的中點(diǎn)∴又∵∴△BDG≌△CDF∴(2)由(1)中△BDG≌△CDF∴GD=FD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論