版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
京改版數學9年級上冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、如圖,AB是半圓的直徑,點D是弧AC的中點,∠ABC=50°,則∠BCD=()A.105° B.110° C.115° D.120°2、已知二次函數y=ax2+bx+c,其中a<0,若函數圖象與x軸的兩個交點均在負半軸,則下列判斷錯誤的是(
)A.abc<0 B.b>0 C.c<0 D.b+c<03、若為銳角,,則等于(
)A. B. C. D.4、如圖,已知動點,分別在軸,軸正半軸上,動點在反比例函數圖象上,軸,當點的橫坐標逐漸增大時,的面積將會()A.越來越小 B.越來越大C.不變 D.先變大后變小5、如圖,Rt△ABC中,,,,D為BC的中點,若動點E以1cm/s的速度從A點出發(fā),沿AB向B點運動,設E點的運動時間為t秒,連接DE,當以B、D、E為頂點的三角形與△ABC相似時,t的值為()A.2或3.5 B.2或3.2 C.2或3.4 D.3.2或3.46、已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論:①4a+2b+c>0
;②y隨x的增大而增大;③方程ax2+bx+c=0兩根之和小于零;④一次函數y=ax+bc的圖象一定不過第二象限,其中正確的個數是(
)A.4個 B.3個 C.2個 D.1個二、多選題(7小題,每小題2分,共計14分)1、下列說法不正確的是()A.相切兩圓的連心線經過切點 B.長度相等的兩條弧是等弧C.平分弦的直徑垂直于弦 D.相等的圓心角所對的弦相等2、如圖,AB是⊙O的直徑,CD是⊙O的切線,切點為D,CD與AB的延長線交于點C,∠A=30°,則下列結論中正確的是()A.AD=CD B.BD=BC C.AB=2BC D.∠ABD=60°3、下列各組圖形中相似的是(
)A.各有一個角是45°的兩個等腰三角形B.各有一個角是60°的兩個等腰三角形C.各有一個角是105°的兩個等腰三角形D.兩個等腰直角三角形4、如圖,在⊙O中,AB為直徑,BC為切線,弦ADOC,直線CD交BA的延長線于點E,連接BD.下列結論正確的是(
)A.CD是⊙O的切線 B.CO⊥DBC.△EDA∽△EBD D.5、在Rt△ABC中,∠C=90°,下列式子一定成立的是(
)A.sinA=sinB B.cosA=sinB C.sinA=cosB D.∠A+∠B=90°6、如圖,在△ABC中,點D、E分別在邊AB、AC上,且BD=2AD,CE=2AE,則下列結論中成立的是()A.△ABC∽△ADE B.DE∥BCC.DE:BC=1:2 D.S△ABC=9S△ADE7、用一個2倍的放大鏡照一個△ABC,下列命題中不正確的是(
)A.△ABC放大后角是原來的2倍 B.△ABC放大后周長是原來的2倍C.△ABC放大后面積是原來的2倍 D.以上的命題都不對第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、二次函數y=ax2+bx+c(a≠0)圖象上部分點的坐標(x,y)對應值列表如下:x…-3-2-101…y…-4-3-4-7-12…則該圖象的對稱軸是___________2、在每個小正方形的邊長為1的網格圖形中,每個小正方形的頂點稱為格點,頂點都是格點的三角形稱為格點三角形.如圖,已知Rt△ABC是6×6網格圖形中的格點三角形,則該圖中所有與Rt△ABC相似的格點三角形中.面積最大的三角形的斜邊長是_____.3、把拋物線向左平移1個單位長度,再向下平移3個單位長度,得到的拋物線的解析式為___.4、在平面直角坐標系中,已知和是拋物線上的兩點,將拋物線的圖象向上平移n(n是正整數)個單位,使平移后的圖象與x軸沒有交點,則n的最小值為_____.5、小明的身高為1.6,他在陽光下的影長為2,此時他旁邊的旗桿的影長為15,則旗桿的高度為_______.6、如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,BC的中點為D,將△ABC繞點C順時針旋轉任意一個角度得到△FEC,EF的中點為G,連接DG,在旋轉過程中,DG的最大值是________7、如圖1是臺灣某品牌手工蛋卷的外包裝盒,其截面圖如圖2所示,盒子上方是一段圓?。ɑN).D,E為手提帶的固定點,DE與弧MN所在的圓相切,DE=2.手提帶自然下垂時,最低點為C,且呈拋物線形,拋物線與弧MN交于點F,G.若△CDE是等腰直角三角形,且點C,F到盒子底部AB的距離分別為1,,則弧MN所在的圓的半徑為_____.四、解答題(6小題,每小題10分,共計60分)1、已知有三條長度分別為2cm、4cm、8cm的線段,請再添一條線段.使這四條線段成比例,求所添線段的長度.2、如圖,Rt△ABO的頂點A是反比例函數的圖象與一次函數的圖象在第二象限的交點,AB⊥x軸于點B,且.(1)求反比例函數和一次函數的解析式;(2)求一次函數與反比例函數圖象的兩個交點A,C的坐標.3、如圖,已知中,,點在邊上,滿足求證:(1)(2).4、冰墩墩是2022年北京冬季奧運會的吉祥物.冰墩墩以熊貓為原型設計,寓意創(chuàng)造非凡、探索未來.某超市用2400元購進一批冰墩墩玩偶出售.若進價降低20%,則可以多買50個.市場調查發(fā)現:當每個冰墩墩玩偶的售價是20元時,每周可以銷售200個;每漲價1元,每周少銷售10個.(1)求每個冰墩墩玩偶的進價;(2)設每個冰墩墩玩偶的售價是x元(x是大于20的正整數),每周總利潤是w元.①求w關于x的函數解析式,并求每周總利潤的最大值;②當每周總利潤不低于1870元時,求每個冰墩墩玩偶售價x的范圍.5、新冠肺炎疫情期間,我國各地采取了多種方式進行預防.其中,某地運用無人機規(guī)勸居民回家.如圖,無人機于空中A處測得某建筑頂部B處的仰角為,測得該建筑底部C處的俯角為.若無人機的飛行高度為,求該建筑的高度(結果取整數),參考數據:,,.6、已知,且,求x,y的值.-參考答案-一、單選題1、C【解析】【分析】連接AC,然后根據圓內接四邊形的性質,可以得到∠ADC的度數,再根據點D是弧AC的中點,可以得到∠DCA的度數,直徑所對的圓周角是90°,從而可以求得∠BCD的度數.【詳解】解:連接AC,∵∠ABC=50°,四邊形ABCD是圓內接四邊形,∴∠ADC=130°,∵點D是弧AC的中點,∴CD=AC,∴∠DCA=∠DAC=25°,∵AB是直徑,∴∠BCA=90°,∴∠BCD=∠BCA+∠DCA=115°,故選:C.【考點】本題考查圓周角定理、圓心角、弧、弦的關系,解答本題的關鍵是明確題意,利用數形結合的思想解答.2、B【解析】【分析】根據函數圖象與x軸的兩個交點均在負半軸,可得拋物線的對稱軸與x軸負半軸相交,可以判斷a,b,c的符號,進而可得結論.【詳解】解:因為函數圖象與x軸的兩個交點均在負半軸,所以拋物線的對稱軸與x軸負半軸相交,所以﹣<0,c<0,因為a<0,所以b<0,因為c<0,所以abc<0,b+c<0,故選:B.【考點】本題考查了二次函數圖象與系數的關系,解決本題的關鍵是掌握二次函數圖象與系數的關系.3、B【解析】【分析】根據tan45°=1求出即可.【詳解】∵∠A為銳角,tanA=1,∴∠A=45°.故選B.【考點】本題考查了特殊角的三角函數值,主要考查學生的記憶能力和計算能力.4、C【解析】【分析】設點,作可得,根據可得答案.【詳解】解:如圖,過點作于點,則,設點,則,當點的橫坐標逐漸增大時,的面積將會不變,始終等于,故選:.【考點】本題主要考查反比例函數系數的幾何意義,熟練掌握在反比例函數的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是,且保持不變.5、A【解析】【分析】求出AB=2BC=4cm,分兩種情況:①當∠EDB=∠ACB=90°時,DE∥AC,△EBD∽△ABC,得出AE=BE=AB=2cm,即可得出t=2s;②當∠DEB=∠ACB=90°時,證出△DBE∽△ABC,得出∠BDE=∠A=30°,因此BE=BD=cm,得出AE=3.5cm,t=3.5s;即可得出結果.【詳解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∴AB=2BC=4cm,分兩種情況:①當∠EDB=∠ACB=90°時,DE∥AC,所以△EBD∽△ABC,E為AB的中點,AE=BE=AB=2cm,∴t=2s;②當∠DEB=∠ACB=90°時,∵∠B=∠B,∴△DBE∽△ABC,∴∠BDE=∠A=30°,∵D為BC的中點,∴BD=BC=1cm,∴BE=BD=0.5cm,∴AE=3.5cm,∴t=3.5s;綜上所述,當以B、D、E為頂點的三角形與△ABC相似時,t的值為2或3.5,故選A.【考點】本題考查了相似三角形的判定、平行線的性質、含30°角的直角三角形的性質等知識;熟記相似三角形的判定方法是解決問題的關鍵,注意分類討論.6、D【解析】【分析】根據函數的圖象可知x=2時,函數值的正負性;并且可知與x軸有兩個交點,即對應方程有兩個實數根;函數的增減性需要找到其對稱軸才知具體情況;由函數的圖象還可知b、c的正負性,一次函數y=ax+bc所經過的象限進而可知正確選項.【詳解】∵當x=2時,y=4a+2b+c,對應的y值為正,即4a+2b+c>0,故①正確;∵因為拋物線開口向上,在對稱軸左側,y隨x的增大而減??;在對稱軸右側,y隨x的增大而增大,故②錯誤;∵由二次函數y=ax2+bx+c(a≠0)的圖象可知:函數圖象與x軸有兩個不同的交點,即對應方程有兩個不相等的實數根,且正根的絕對值較大,∴方程ax2+bx+c=0兩根之和大于零,故③錯誤;∵由圖象開口向上,知a>0,與y軸交于負半軸,知c<0,由對稱軸,知b<0,∴bc>0,∴一次函數y=ax+bc的圖象一定經過第二象限,故④錯誤;綜上,正確的個數為1個,故選:D.【考點】本題考查了二次函數的圖象與系數的關系以及一次函數的圖象,利用了數形結合的思想,此類題涉及的知識面比較廣,能正確觀察圖象是解本題的關鍵.二、多選題1、BCD【解析】【分析】要找出正確命題,可運用相關基礎知識分析找出正確選項,也可以通過舉反例排除不正確選項,從而得出正確選項.(1)等弧指的是在同圓或等圓中,能夠完全重合的?。L度相等的兩條弧,不一定能夠完全重合;(2)此弦不能是直徑;(3)相等的圓心角所對的弦相等指的是在同圓或等圓中.【詳解】解:A、根據圓的軸對稱性可知此命題正確,不符合題意;B、等弧指的是在同圓或等圓中,能夠完全重合的?。嗣}沒有強調在同圓或等圓中,所以長度相等的兩條弧,不一定能夠完全重合,此命題錯誤,符合題意;B、此弦不能是直徑,命題錯誤,符合題意;C、相等的圓心角指的是在同圓或等圓中,此命題錯誤,符合題意;故選:BCD.【考點】本題考查的是兩圓的位置關系、圓周角定理以及垂徑定理,熟知平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧是解答此題的關鍵.2、ABCD【解析】【分析】連接OD,CD是⊙O的切線,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等邊三角形,∠C=∠BDC=30°,再結合在直角三角形中300所對的直角邊等于斜邊的一半,繼而得到結論.【詳解】解:如圖,連接OD,∵CD是⊙O的切線,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,故選項D成立;∴△OBD是等邊三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,故選項B成立;∴AB=2BC,故選項C成立;∴∠A=∠C,∴DA=DC,故選項A成立;綜上所述,故選項ABCD均成立,故選:ABCD.【考點】本題考查了圓的有關性質的綜合應用,在本題中借用切線的性質,求得相應角的度數是解題的關鍵.3、BCD【解析】【分析】根據相似三角形的判定方法和等腰三角形的性質進行解答即可得.【詳解】解:A、沒有指明這個的角是頂角還是底角,則無法判定其相似,選項說法錯誤,不符合題意;B、有一個角為的等腰三角形是等邊三角形,根據三組對應邊的比相等的兩個三角形相似判定這兩個三角形相似,選項說法正確,符合題意;C、已知一個角為的等腰三角形,我們可以判定其為頂角,頂角相等且兩條腰對應成比例則這兩個三角形相似,選項說法正確,符合題意;D、兩個等腰直角三角形,可以根據兩組對應邊的比相等且相應的夾角相等的兩個三角形相似來判定這兩個三角形相似,選項說法正確,符合題意;故選BCD.【考點】本題考查了相似三角形,解題的根據是掌握相似三角形的判定和等腰三角形的性質.4、ABC【解析】【分析】由切線的性質得∠CBO=90°,首先連接OD,易證得△COD≌△COB(SAS),然后由全等三角形的對應角相等,求得∠CDO=90°,即可證得直線CD是⊙O的切線;根據全等三角形的性質得到CD=CB,根據線段垂直平分線的判定定理得到即CO⊥DB;根據余角的性質得到∠ADE=∠BDO,等量代換得到∠EDA=∠DBE,根據相似三角形的判定定理得到△EDA∽△EBD;根據相似三角形的性質得到,于是得到ED?BC=BO?BE.【詳解】解:A.證明:連接DO.∵AB為⊙O的直徑,BC為⊙O的切線,∴∠CBO=90°,∵ADOC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵點D在⊙O上,∴CD是⊙O的切線;故選項正確,符合題意;B.證明:∵△COD≌△COB,∴CD=CB,∵OD=OB,∴CO垂直平分DB,即CO⊥DB,故選項正確,符合題意;C.證明:∵AB為⊙O的直徑,DC為⊙O的切線,∴∠EDO=∠ADB=90°,∴∠EDA+∠ADO=∠BDO+∠ADO=90°,∴∠ADE=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠EDA=∠DBE,∵∠E=∠E,∴△EDA∽△EBD,故選項正確,符合題意;D.證明:∵∠EDO=∠EBC=90°,∠E=∠E,∴△EOD∽△ECB,∴,∵OD=OB,∴ED?BC=BO?BE,故選項錯誤,不符合題意.故選:ABC.【考點】本題主要考查了切線的判定、全等三角形的判定與性質以及相似三角形的判定與性質,注意掌握輔助線的作法,注意數形結合思想的應用是解答此題的關鍵.5、BCD【解析】【分析】根據互為余角的三角函數關系,可判斷A、B、C;根據直角三角形的性質,可判斷D.【詳解】解:∵∠C=90°,∴∠A+∠B=90°,A、A≠B時,sinA≠sinB,故A錯誤;B、∵∠A+∠B=90°,∴cosA=sinB,故B正確;C、∵∠A+∠B=90°,∴sinA=cosB,故C正確;D、∵∠C=90°,∴∠A+∠B=90°,故D正確;故選:BCD.【考點】本題考查了互余兩角三角函數的關系,熟記同角(或余角)的三角函數關系式是解題的關鍵.6、ABD【解析】【分析】由已知條件易證DE∥BC,則△ABC∽△ADE,再由相似三角形的性質即可得到問題的選項.【詳解】解:∵BD=2AD,CE=2AE,∴,∴DE∥BC,故B正確;∴△ABC∽△ADE,故A正確;∴DE:BC=AD:AB=1:3,故C錯誤;∴S△ABC=9S△ADE故D正確,∴其中成立的jABD,故選ABD.【考點】本題考查了平行四邊形的性質以及相似三角形的判定和性質,證明DE∥BC是解題的關鍵.7、ACD【解析】【分析】用2倍的放大鏡放大一個△ABC,得到一個與原三角形相似的三角形;根據相似三角形的性質:相似三角形的面積比等于相似比的平方,周長比等于相似比.可知:放大后三角形的面積是原來的4倍,邊長和周長是原來的2倍,而內角的度數不會改變.【詳解】解:A、錯誤,△ABC放大后角不變,故該選項符合題意;B、正確,△ABC放大后周長是原來的2倍,故該選項不符合題意;C、錯誤,△ABC放大后面積是相似比的平方,放大后面積是原來的4倍,故該選項符合題意;D、錯誤,故該選項符合題意.故選:ACD.【考點】本題考查對相似三角形性質的理解.(1)相似三角形周長的比等于相似比;(2)相似三角形面積的比等于相似比的平方;(3)相似三角形對應高的比、對應中線的比、對應角平分線的比都等于相似比.三、填空題1、【解析】【分析】根據二次函數的圖象具有對稱性和表格中的數據,可以計算出該函數圖象的對稱軸.【詳解】解:由表格可得,當x取-3和-1時,y值相等,該函數圖象的對稱軸為直線,故答案為:.【考點】本題考查二次函數的性質、二次函數圖象上點的坐標特征,解題的關鍵是明確題意,利用二次函數的對稱性解答.2、5【解析】【分析】根據相似三角形的性質確定兩直角邊的比值為1:2,以及6×6網格圖形中,最長線段為6,進行嘗試,可確定、、為邊的這樣一組三角形滿足條件.【詳解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴與Rt△ABC相似的格點三角形的兩直角邊的比值為1:2,若該三角形最短邊長為4,則另一直角邊長為8,但在6×6網格圖形中,最長線段為6,但此時畫出的直角三角形為等腰直角三角形,從而畫不出端點都在格點且長為8的線段,故最短直角邊長應小于4,在圖中嘗試,可畫出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此時△DEF的面積為:×2÷2=10,△DEF為面積最大的三角形,其斜邊長為:5.故答案為:5.【考點】本題考查了作圖-應用與設計、相似三角形的判定和性質、勾股定理等知識,解題的關鍵是學會利用數形結合的思想解決問題,屬于中考填空題中的壓軸題.3、【解析】【分析】直接根據“上加下減,左加右減”進行計算即可.【詳解】解:拋物線向左平移1個單位長度,再向下平移3個單位長度,得到的拋物線的解析式為:,即:故答案為:.【考點】本題主要考查函數圖像的平移,熟記函數圖像的平移方式“上加下減,左加右減”是解題的關鍵.4、4【解析】【分析】通過A、B兩點得出對稱軸,再根據對稱軸公式算出b,由此可得出二次函數表達式,從而算出最小值即可推出n的最小值.【詳解】∵A、B的縱坐標一樣,∴A、B是對稱的兩點,∴對稱軸,即,∴b=-4.∴拋物線解析式為:.∴拋物線頂點(2,-3).∴滿足題意n的最小值為4,故答案為:4.【考點】本題考查二次函數對稱軸的性質,頂點式的變形及拋物線的平移,關鍵在于根據對稱軸的性質從題意中判斷出對稱軸.5、12【解析】【分析】設這根旗桿的高度為xm,利用某一時刻物體的高度與它的影長的比相等得到,然后利用比例性質求x即可.【詳解】設這根旗桿的高度為xm,根據題意得解得x=12(m),即這根旗桿的高度為12m.故答案為12.【考點】本題考查了相似三角形的應用:利用影長測量物體的高度;利用相似測量河的寬度(測量距離);借助標桿或直尺測量物體的高度.6、6【解析】【分析】解直角三角形求出AB、BC,再求出CD,連接CG,根據直角三角形斜邊上的中線等于斜邊的一半求出CG,然后根據三角形的任意兩邊之和大于第三邊判斷出D、C、G三點共線時DG有最大值,再代入數據進行計算即可得解.【詳解】連接CG,∵BC的中點為D∵△ABC繞點C順時針旋轉任意一個角度得到△FEC,EF的中點為G由三角形的三邊關系得∴D、C、G三點共線時,DG有最大值故答案為:6.【考點】本題考查了旋轉三角形的問題,掌握旋轉的性質、解直角三角形、三角形的三邊關系是解題的關鍵.7、.【解析】【分析】以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標系,設拋物線的表達式為y=ax2+1,因為△CDE是等腰直角三角形,DE=2,得點E的坐標為(1,2),可得拋物線的表達式為y=x2+1,把當y代入拋物線表達式,求得MH的長,再在Rt△FHM中,用勾股定理建立方程,求得所在的圓的半徑.【詳解】如圖,以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標系,設所在的圓的圓心為P,半徑為r,過F作y軸的垂線交y軸于H,設拋物線的表達式為y=ax2+1.∵△CDE是等腰直角三角形,DE=2,∴點E的坐標為(1,2),代入拋物線的表達式,得:2=a+1,a=1,∴拋物線的表達式為y=x2+1,當y時,即,解得:,∴FH.∵∠FHM=90°,DE與所在的圓相切,∴,解得:,∴所在的圓的半徑為.故答案為.【考點】本題考查了圓的切線的性質,待定系數法求拋物線的表達式,垂徑定理.解題的關鍵是建立合適的平面直角坐標系得出拋物線的表達式.四、解答題1、1或4或16.【解析】【分析】根據成比例線段的性質求解即可.【詳解】解:設添加的線段長度為x,當時,解得:;當時,解得:;當時,解得:.∴所添線段的長度為1或4或16.【考點】此題考查了線段成比例,解題的關鍵是熟練掌握線段成比例性質并分類討論.2、(1),;(2)A(-1,6),C(6,-1).【解析】【分析】(1)先根據反比例函數的圖象所在的象限判斷出k的符號,在由△ABO的面積求出k的值,進而可得出兩個函數的解析式;(2)把兩函數的解析式組成方程組,求出x、y的值,即可得出A、C兩點的坐標.【詳解】(1)∵AB⊥x軸于點B,且,∴,∴.∵反比例函數圖象在第二、四象限,∴,∴,∴反比例函數的解析式為,一次函數的解析式為;(2)由,解得,或,∴A(-1,6),C(6,-1).【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 邊城書籍介紹課件
- 辯論賽培訓課件
- 車隊職工安全培訓課件
- 內科主治醫(yī)師考試強化沖刺試題及答案
- 車隊冬季四防安全培訓課件
- 2026年四川低壓電工理論考試題庫及答案
- 酒店員工行為規(guī)范及獎懲制度
- 車間級安全培訓教學課件
- (2026)院感科年度培訓計劃(2篇)
- 車間電氣設備培訓課件
- 委內瑞拉變局的背后
- 政府補償協(xié)議書模板
- 語文-吉林省2026屆高三九校11月聯合模擬考
- 2025年四川省高職單招模擬試題語數外全科及答案
- 2025年江蘇事業(yè)單位教師招聘體育學科專業(yè)知識考試試卷含答案
- 模擬智能交通信號燈課件
- 合肥市軌道交通集團有限公司招聘筆試題庫及答案2025
- 2.3《河流與湖泊》學案(第2課時)
- 工地臨建合同(標準版)
- GB/T 46275-2025中餐評價規(guī)范
- 2025至2030供水產業(yè)行業(yè)項目調研及市場前景預測評估報告
評論
0/150
提交評論