版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、將等邊三角形繞其中心旋轉n時與原圖案完全重合,那么n的最小值是()A.60 B.90 C.120 D.1802、圖2是由圖1經過某一種圖形的運動得到的,這種圖形的運動是()A.平移 B.翻折 C.旋轉 D.以上三種都不對3、下列事件為隨機事件的是()A.四個人分成三組,恰有一組有兩個人 B.購買一張福利彩票,恰好中獎C.在一個只裝有白球的盒子里摸出了紅球 D.擲一次骰子,向上一面的點數(shù)小于74、如圖,ABCD是正方形,△CDE繞點C逆時針方向旋轉90°后能與△CBF重合,那么△CEF是()A..等腰三角形 B.等邊三角形C..直角三角形 D..等腰直角三角形5、如圖,在中,,,將繞點C逆時針旋轉90°得到,則的度數(shù)為()A.105° B.120° C.135° D.150°6、如圖,與相切于點,連接交于點,點為優(yōu)弧上一點,連接,,若,的半徑,則的長為()A.4 B. C. D.17、下列事件是確定事件的是()A.方程有實數(shù)根 B.買一張體育彩票中大獎C.拋擲一枚硬幣正面朝上 D.上海明天下雨8、把7個同樣大小的正方體形狀的積木堆放在桌子上,從正面和左面看到的形狀圖都是如圖所示的同樣的圖形,則其從上面看到的形狀圖不可能是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、不透明袋子中裝有5個球,其中有2個紅球、3個黑球,這些球除顏色外無其他差別.從袋子中隨機取出1個球,則它是黑球的概率是________.2、如圖,與x軸交于、兩點,,點P是y軸上的一個動點,PD切于點D,則△ABD的面積的最大值是________;線段PD的最小值是________.3、AB是的直徑,點C在上,,點P在線段OB上運動.設,則x的取值范圍是________.4、如圖,在⊙O中,弦AB⊥OC于E點,C在圓上,AB=8,CE=2,則⊙O的半徑AO=___________.5、在圓內接四邊形ABCD中,,則的度數(shù)為______.6、如圖,⊙O的半徑為2,△ABC是⊙O的內接三角形,連接OB、OC,若弦BC的長度為,則∠BAC=________度.7、如圖,在⊙O中,=,AB=10,BC=12,D是上一點,CD=5,則AD的長為______.三、解答題(7小題,每小題0分,共計0分)1、一個不透明的口袋中有4個完全相同的小球,把它們分別標號為1,2,3,4隨機摸取一個小球后,不放回,再隨機摸出一個小球,分別求下列事件的概率:(1)兩次取出的小球標號和為奇數(shù);(2)兩次取出的小球標號和為偶數(shù).2、如圖,已知在中,,D、E是BC邊上的點,將繞點A旋轉,得到,連接.(1)當時,時,求證:;(2)當時,與有怎樣的數(shù)量關系?請寫出,并說明理由.(3)在(2)的結論下,當,BD與DE滿足怎樣的數(shù)量關系時,是等腰直角三角形?(直接寫出結論,不必證明)3、在平面直角坐標系xOy中,給出如下定義:若點P在圖形M上,點Q在圖形N上,稱線段PQ長度的最小值為圖形M,N的“近距離”,記為d(M,N),特別地,若圖形M,N有公共點,規(guī)定d(M,N)=0.已知:如圖,點A(,0),B(0,).(1)如果⊙O的半徑為2,那么d(A,⊙O)=,d(B,⊙O)=.(2)如果⊙O的半徑為r,且d(⊙O,線段AB)=0,求r的取值范圍;(3)如果C(m,0)是x軸上的動點,⊙C的半徑為1,使d(⊙C,線段AB)<1,直接寫出m的取值范圍.4、新高考“3+1+2”是指:3,語數(shù)外三科是必考科目;1,物理、歷史兩科中任選一科;2,化學、生物、地理、政治四科中任選兩科.某同學確定選擇“物理”,但他不確定其它兩科選什么,于是他做了一個游戲:他拿來四張不透明的卡片,正面分別寫著“化學、生物、地理、政治”,再將這四張卡片背面朝上并打亂順序,然后從這四張卡片中隨機抽取兩張,請你用畫樹狀圖(或列表)的方法,求該同學抽出的兩張卡片是“化學、政治”的概率.5、如圖1,在中,,,點D為AB邊上一點.(1)若,則______;(2)如圖2,將線段CD繞著點C逆時針旋轉90°得到線段CE,連接AE,求證:;(3)如圖3,過點A作直線CD的垂線AF,垂足為F,連接BF.直接寫出BF的最小值.6、如圖所示,是⊙的一條弦,,垂足為,交⊙于點,點在⊙上.()若,求的度數(shù).()若,,求的長.7、已知:Rt△ABC中,∠ACB=90°,∠ABC=60°,將△ABC繞點B按順時針方向旋轉.(1)當C轉到AB邊上點C′位置時,A轉到A′,(如圖1所示)直線CC′和AA′相交于點D,試判斷線段AD和線段A′D之間的數(shù)量關系,并證明你的結論.(2)將Rt△ABC繼續(xù)旋轉到圖2的位置時,(1)中的結論是否成立?若成立,請證明;若不成立,請說明理由;(3)將Rt△ABC旅轉至A、C′、A′三點在一條直線上時,請直接寫出此時旋轉角α的度數(shù).-參考答案-一、單選題1、C【分析】根據旋轉對稱圖形的概念(把一個圖形繞著一個定點旋轉一個角度后,與初始圖形重合,這種圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角),找到旋轉角,求出其度數(shù).【詳解】解:等邊三角形繞其中心旋轉n時與原圖案完全重合,因而繞其中心旋轉的最小度數(shù)是=120°.故選C.【點睛】本題考查了根據旋轉對稱性,掌握旋轉的性質是解題的關鍵.2、C【詳解】解:根據圖形可知,這種圖形的運動是旋轉而得到的,故選:C.【點睛】本題考查了圖形的旋轉,熟記圖形的旋轉的定義(把一個平面圖形繞平面內某一點轉動一個角度,叫做圖形的旋轉)是解題關鍵.3、B【分析】根據事件發(fā)生的可能性大小判斷.【詳解】解:A、四個人分成三組,恰有一組有兩個人,是必然事件,不合題意;B、購買一張福利彩票,恰好中獎,是隨機事件,符合題意;C、在一個只裝有白球的盒子里摸出了紅球,是不可能事件,不合題意;D、擲一次骰子,向上一面的點數(shù)小于7,是必然事件,不合題意;故選:B.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念,必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.4、D【分析】根據旋轉的性質推出相等的邊CE=CF,旋轉角推出∠ECF=90°,即可得到△CEF為等腰直角三角形.【詳解】解:∵△CDE繞點C逆時針方向旋轉90°后能與△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故選:D.【點睛】本題主要考查旋轉的性質,掌握圖形旋轉前后的大小和形狀不變是解決問題的關鍵.5、B【分析】由題意易得,然后根據三角形外角的性質可求解.【詳解】解:由旋轉的性質可得:,∴;故選B.【點睛】本題主要考查旋轉的性質及三角形外角的性質,熟練掌握旋轉的性質及三角形外角的性質是解題的關鍵.6、B【分析】連接OB,根據切線性質得∠ABO=90°,再根據圓周角定理求得∠AOB=60°,進而求得∠A=30°,然后根據含30°角的直角三角形的性質解答即可.【詳解】解:連接OB,∵AB與相切于點B,∴∠ABO=90°,∵∠BDC=30°,∴∠AOB=2∠BDC=60°,在Rt△ABO中,∠A=90°-60°=30°,OB=OC=2,∴OA=2OB=4,∴,故選:B.【點睛】本題考查切線的性質、圓周角定理、直角三角形的銳角互余、含30°角的直角三角形性質、勾股定理,熟練掌握相關知識的聯(lián)系與運用是解答的關鍵.7、A【分析】隨機事件:是指在一定條件下可能發(fā)生也可能不發(fā)生的事件,根據隨機事件的分類對各個選項逐個分析,即可得到答案【詳解】解:.方程無實數(shù)根,因此“方程有實數(shù)”是不可能事件,所以選項符合題意;B.買一張體育彩票可能中大獎,有可能不中,因此是隨機事件,所以選項B不符合題意;C.拋擲一枚硬幣,可能正面朝上,有可能反面朝上,因此是隨機事件,所以選項C不符合題意;D.上海明天可能下雨,有可能不下雨,因此是隨機事件,所以選項D不符合題意;故選:.【點睛】本題考查的是確定事件與隨機事件的概念,掌握確定事件分為必然事件,不可能事件,及隨機事件的概念是解題的關鍵.8、C【分析】利用俯視圖,寫出符合題意的小正方體的個數(shù),即可判斷.【詳解】A、當7個小正方體如圖分布時,符合題意,本選項不符合題意.B、當7個小正方體如圖分布時,符合題意,本選項不符合題意.C、沒有符合題意的幾何圖形,本選項符合題意.D、當7個小正方體如圖分布時,符合題意,本選項不符合題意.故選:C.【點睛】此題考查了從不同的方向觀察物體和幾何體,鍛煉了學生的空間想象力和抽象思維能力.二、填空題1、【分析】根據概率公式計算即可【詳解】共有個球,其中黑色球3個從中任意摸出一球,摸出白色球的概率是.故答案為:【點睛】本題考查了簡單概率公式的計算,熟悉概率公式是解題的關鍵.2、【分析】根據題中點的坐標可得圓的直徑,半徑為1,分析以AB定長為底,點D在圓上,高最大為圓的半徑,即可得出三角形最大的面積;連接AP,設點,根據切線的性質及勾股定理可得,由其非負性即可得.【詳解】解:如圖所示:當點P到如圖位置時,的面積最大,∵、,∴圓的直徑,半徑為1,∴以AB定長為底,點D在圓上,高最大為圓的半徑,如圖所示:此時面積的最大值為:;如圖所示:連接AP,∵PD切于點D,∴,∴,設點,在中,,,∴,在中,,∴,則,當時,PD取得最小值,最小值為,故答案為:①;②.【點睛】題目主要考查切線的性質及勾股定理的應用,理解題意,作出相應圖形求出解析式是解題關鍵.3、【分析】分別求出當點P與點O重合時,當點P與點B重合時x的值,即可得到取值范圍.【詳解】解:當點P與點O重合時,∵OA=OC,∴,即;當點P與點B重合時,∵AB是的直徑,∴,∴x的取值范圍是.【點睛】此題考查了同圓中半徑相等的性質,直徑所對的圓周角是直角的性質,正確理解點P的運動位置是解題的關鍵.4、5【分析】設⊙O的半徑為r,則OA=r,OD=r-2,先由垂徑定理得到AD=BD=AB=4,再由勾股定理得到42+(r-2)2=r2,然后解方程即可.【詳解】解:設⊙O的半徑為r,則OC=OA=r,OE=OC-CE=r-2,∵OC⊥AB,AB=8,∴AE=BE=AB=4,在Rt△OAE中,由勾股定理得:42+(r-2)2=r2,解得:r=5,即⊙O的半徑長為5,故答案為:5.【點睛】本題考查了垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱斯垂啥ɡ恚?、110°【分析】根據圓內接四邊形對角互補,得∠D+∠B=180°,結合已知求解即可.【詳解】∵圓內接四邊形對角互補,∴∠D+∠B=180°,∵∴∠D=110°,故答案為:110°.【點睛】本題考查了圓內接四邊形互補的性質,熟練掌握并運用性質是解題的關鍵.6、60【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圓周角定理即可解決問題.【詳解】解:如圖作OE⊥BC于E.∵OE⊥BC,∴BE=EC=,∠BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案為:60.【點睛】本題考查三角形的外心與外接圓、圓周角定理.垂徑定理、勾股定理、直角三角形30度角性質、等腰三角形的性質等知識,解題的關鍵是學會添加常用輔助線,靈活運用所學知識解決問題.7、3【分析】過A作AE⊥BC于E,過C作CF⊥AD于F,根據圓周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性質可知BE=CE=6,根據相似三角形的判定證明△ABE∽△CDF,由相似三角形的性質和勾股定理分別求得AE、DF、CF,AF即可求解.【詳解】解:過A作AE⊥BC于E,過C作CF⊥AD于F,則∠AEB=∠CFD=90°,∵=,AB=10,∴∠ACB=∠B=∠D,AB=AC=10,∵AE⊥BC,BC=12,∴BE=CE=6,∴,∵∠B=∠D,∠AEB=∠CFD=90°,∴△ABE∽△CDF,∴,∵AB=10,CD=5,BE=6,AE=8,∴,解得:DF=3,CF=4,在Rt△AFC中,∠AFC=90°,AC=10,CF=4,則,∴AD=DF+AF=3+2,故答案為:3+2.【點睛】本題考查圓周角定理、等腰三角形的性質、相似三角形的判定與性質、勾股定理,熟練掌握圓周角定理和相似三角形的判定與性質是解答的關鍵.三、解答題1、(1);(2).【分析】(1)列出表格展示所有可能的結果,根據表格即可知共有12種可能的情況,再找到兩次取出的小球標號和為奇數(shù)的情況數(shù),利用概率公式,即可求解;(2)找出兩次取出的小球標號和為偶數(shù)的情況數(shù),再利用概率公式,即可求解.(1)解:根據題意列出表格,如下表:根據表格可知:共有12種可能的情況,其中兩次取出的小球標號和為奇數(shù)的情況有8種,故兩次取出的小球標號和為奇數(shù)的概率為;(2)根據表格可知:兩次取出的小球標號和為偶數(shù)的情況有4種.故兩次取出的小球標號和為偶數(shù)的概率為.123411+2=3,奇數(shù)1+3=4,偶數(shù)1+4=5,奇數(shù)22+1=3,奇數(shù)2+3=5,奇數(shù)2+4=6,偶數(shù)33+1=4,偶數(shù)3+2=5,奇數(shù)3+4=7,奇數(shù)44+1=5,奇數(shù)4+2=6,偶數(shù)4+3=7,奇數(shù)【點睛】2、(1)見解析;(2)∠DAE=∠BAC,見解析;(3)DE=BD,見解析【分析】(1)根據旋轉的性質可得AD=AD′,∠CAD′=∠BAD,然后求出∠D′AE=60°,從而得到∠DAE=∠D′AE,再利用“邊角邊”證明△ADE和△AD′E全等,根據全等三角形對應邊相等證明即可;(2)根據旋轉的性質可得AD=AD′,再利用“邊邊邊”證明△ADE和△AD′E全等,然后根據全等三角形對應角相等求出∠DAE=∠D′AE,然后求出∠BAD+∠CAE=∠DAE,從而得解;(3)求出∠D′CE=90°,然后根據等腰直角三角形斜邊等于直角邊的倍可得D′E=CD′,再根據旋轉的性質解答即可.【詳解】(1)證明:∵△ABD繞點A旋轉得到△ACD′,∴AD=AD′,∠CAD′=∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D′AE=∠CAD′+∠CAE=∠BAD+∠CAE=∠BAC?∠DAE=120°?60°=60°,∴∠DAE=∠D′AE,在△ADE和△AD′E中,,∴△ADE≌△AD′E(SAS),∴DE=D′E;(2)解:∠DAE=∠BAC.理由如下:在△ADE和△AD′E中,,∴△ADE≌△AD′E(SSS),∴∠DAE=∠D′AE,∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,∴∠DAE=∠BAC;(3)解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD′=45°,∴∠D′CE=45°+45°=90°,∵△D′EC是等腰直角三角形,∴D′E=CD′,由(2)DE=D′E,∵△ABD繞點A旋轉得到△ACD′,∴BD=C′D,∴DE=BD.【點睛】本題考查了幾何變換的綜合題,旋轉的性質,全等三角形的判定與性質,等腰直角三角形的性質,熟記旋轉變換只改變圖形的位置不改變圖形的形狀與大小找出三角形全等的條件是解題的關鍵.3、(1)0,;(2);(3)【分析】(1)根據新定義,即可求解;(2)過點O作OD⊥AB于點D,根據三角形的面積,可得,再由d(⊙O,線段AB)=0,可得當⊙O的半徑等于OD時最小,當⊙O的半徑等于OB時最大,即可求解;(3)過點C作CN⊥AB于點N,利用銳角三角函數(shù),可得∠OAB=60°,然后分三種情況:當點C在點A的右側時,當點C與點A重合時,當點C在點A的左側時,即可求解.【詳解】解:(1)∵⊙O的半徑為2,A(,0),B(0,).∴,∴點A在⊙O上,點B在⊙O外,∴d(A,⊙O)=,∴d(B,⊙O)=;(2)過點O作OD⊥AB于點D,∵點A(,0),B(0,).∴,∴,∵,∴∴,∵d(⊙O,線段AB)=0,∴當⊙O的半徑等于OD時最小,當⊙O的半徑等于OB時最大,∴r的取值范圍是,(3)如圖,過點C作CN⊥AB于點N,∵點A(,0),B(0,).∴,∴,∴∠OAB=60°,∵C(m,0),當點C在點A的右側時,,∴,∴,∵d(⊙C,線段AB)<1,⊙C的半徑為1,∴,解得:,當點C與點A重合時,,此時d(⊙C,線段AB)=0,當點C在點A的左側時,,∴,∴,解得:,∴.【點睛】本題主要考查了點與圓的位置關系,點與直線的位置關系,理解新定義,熟練掌握點與圓的位置關系,點與直線的位置關系是解題的關鍵.4、【分析】用A、B、C、D分別表示化學、生物、地理、政治,然后畫出樹狀圖求解.【詳解】解:用A、B、C、D分別表示化學、生物、地理、政治,畫樹狀圖如下,,由樹狀圖可知,共有12種等可能發(fā)生的情況,其中符合條件的情況有2種,所以該同學抽出的兩張卡片是“化學、政治”的概率=.【點睛】本題考查了樹狀圖法或列表法求概率,解題的關鍵是正確畫出樹狀圖或表格,然后用符合條件的情況數(shù)m除以所有等可能發(fā)生的情況數(shù)n即可,即.5、(1)5(2)證明見解析(3)【分析】(1)過C作CM⊥AB于M,根據等腰三角形的性質求出CM和DM,再根據勾股定理計算即可;(2)連BE,先證明,即可得到直角三角形ABE,利用勾股定理證明即可;(3)取AC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年村醫(yī)培訓課件
- 洪澇防護知識培訓課件
- 2026年人力資源管理員工風險管理與培訓策略題庫
- 2026年電子信息技術專家考試題集及解析
- 2026年職業(yè)資格考試法律法規(guī)知識專項題庫
- 2026年經濟師考試教材配套習題集經濟理論與實務練習
- 2026年工程與建筑領域專業(yè)知識競賽解析
- 2026年1財務管理面試財務報表分析與預算管理題集
- 2026年電商營銷培訓網絡市場調研與營銷策略測試題
- 2026年公共管理理論與實踐區(qū)域公職人員晉升測試題庫
- 辦公樓裝修施工質量控制方案
- AI for Process 企業(yè)級流程數(shù)智化變革藍皮書 2025
- 進展性卒中課件
- GJB1406A-2021產品質量保證大綱要求
- 醫(yī)院培訓課件:《高血壓的診療規(guī)范》
- 口腔種植醫(yī)生進修匯報
- 口腔客服接診技巧
- 特教數(shù)學教學課件
- 華為完整版本
- 2025年云南省中考化學試卷真題(含標準答案及解析)
- 華為干部培訓管理制度
評論
0/150
提交評論