版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省壽光市中考數(shù)學(xué)真題分類(勾股定理)匯編專題測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在中,,cm,cm,點、分別在、邊上.現(xiàn)將沿翻折,使點落在點處.連接,則長度的最小值為(
)A.0 B.2 C.4 D.62、若a,b為直角三角形的兩直角邊,c為斜邊,下列選項中不能用來證明勾股定理的是(
)A. B.C. D.3、如圖,一棵大樹在一次強臺風中距地面5m處折斷,倒下后樹頂端著地點A距樹底端B的距離為12m,這棵大樹在折斷前的高度為(
)A.10m B.15m C.18m D.20m4、如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點E處,連接DE交AB于點F,當∠DEB是直角時,DF的長為(
).A.5 B.3 C. D.5、如圖,嘉嘉在A時測得一棵4米高的樹的影長為,若A時和B時兩次日照的光線互相垂直,則B時的影長為(
)A. B. C. D.6、“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲.如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形.設(shè)直角三角形較長直角邊長為a,較短直角邊長為b.若ab=8,大正方形的面積為25,則小正方形的邊長為A.9 B.6 C.4 D.37、我國古代數(shù)學(xué)名著《算法統(tǒng)宗》有一道“蕩秋千”的問題:“平地秋千未起,踏板一尺離地.送行二步與人齊,5尺人高曾記,仕女家人爭蹴.良工高士素好奇,算出索長有幾?”此問題可理解為:“如圖,有一架秋千,當它靜止時,踏板離地距離的長為尺,將它向前水平推送尺時,即尺,秋千踏板離地的距離和身高尺的人一樣高,秋千的繩索始終拉得很直,試問繩索有多長?”,設(shè)秋千的繩索長為尺,根據(jù)題意可列方程為(
)A. B.C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖所示,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為7cm,正方形A、B、C的面積分別是,,,則正方形D的面積是______.2、如圖,在的網(wǎng)格中每個小正方形的邊長都為1,的頂點、、都在格點上,點為邊的中點,則線段的長為________.3、如圖,在網(wǎng)格中,每個小正方形的邊長均為1.點A、B,C都在格點上,若BD是△ABC的高,則BD的長為__________.4、已知a、b、c是一個三角形的三邊長,如果滿足,則這個三角形的形狀是_______.5、如圖,已知中,,,動點M滿足,將線段繞點C順時針旋轉(zhuǎn)得到線段,連接,則的最小值為_________.6、我國古代數(shù)學(xué)著作《九章算術(shù)》中的一個問題:一根竹子高1丈(1丈=10尺),折斷后頂端落在離竹子底端3尺處,問折斷處離地面的高度為多少尺?如圖,設(shè)折斷處離地面的高度為x尺,根據(jù)題意,可列出關(guān)于x方程為:__________.7、如圖,△ABC中,∠C=90°,AD平分∠BAC,AB=5,AC=3,則BD的長是__.8、如圖,一個高,底面周長的圓柱形水塔,現(xiàn)制造一個螺旋形登梯,為了減小坡度,要求登梯繞塔環(huán)繞一周半到達頂端,問登梯至少為___________長.三、解答題(7小題,每小題10分,共計70分)1、下圖是某“飛越叢林”俱樂部新近打造的一款兒童游戲項目,工作人員告訴小敏,該項目AB段和BC段均由不銹鋼管材打造,總長度為26米,長方形CDEF為一木質(zhì)平臺的主視圖.小敏經(jīng)過現(xiàn)場測量得知:CD=1米,AD=15米,于是小敏大膽猜想立柱AB段的長為10米,請判斷小敏的猜想是否正確?如果正確,請寫出理由,如果錯誤,請求出立柱AB段的正確長度.2、如圖所示,△ABC的兩條高AD,BE相交于點F,AC=BC.(1)求證:△ADC≌△BEC.(2)若CD=1,BE=2,求線段AC的長.3、小明爸爸給小明出了一道題:如圖,修公路遇到一座山,于是要修一條隧道.已知A,B,C在同一條直線上,為了在小山的兩側(cè)B,C同時施工,過點B作一直線m(在山的旁邊經(jīng)過),過點C作一直線l與m相交于D點,經(jīng)測量,,米,米.若施工隊每天挖100米,求施工隊幾天能挖完?4、如圖,有一架秋千,當他靜止時,踏板離地的垂直高度,將他往前推送(水平距離)時,秋千的踏板離地的垂直高度,秋千的繩索始終拉得很直,求繩索的長度.5、如圖,已知和中,,,,點C在線段BE上,連接DC交AE于點O.(1)DC與BE有怎樣的位置關(guān)系?證明你的結(jié)論;(2)若,,求DE的長.6、如圖,一艘船由A港沿北偏東60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.(1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);(2)確定C港在A港的什么方向.7、如圖,已知等腰△ABC的底邊BC=10cm,D是腰AC上一點,且CD=6cm,BD=8cm.(1)判斷△BCD的形狀,并說明理由;(2)求△ABC的周長.-參考答案-一、單選題1、C【解析】【分析】當H落在AB上,點D與B重合時,AH長度的值最小,根據(jù)勾股定理得到AB=10cm,由折疊的性質(zhì)知,BH=BC=6cm,于是得到結(jié)論.【詳解】解:當H落在AB上,點D與B重合時,AH長度的值最小,∵∠C=90°,AC=8cm,BC=6cm,∴AB=10cm,由折疊的性質(zhì)知,BH=BC=6cm,∴AH=AB-BH=4cm.故選:C.【考點】本題考查了翻折變換(折疊問題),勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.2、A【解析】【分析】由題意根據(jù)圖形的面積得出的關(guān)系,即可證明勾股定理,分別分析即可得出答案【詳解】解:A、不能利用圖形面積證明勾股定理;B、根據(jù)面積得到;C、根據(jù)面積得到,整理得;D、根據(jù)面積得到,整理得.故選:A.【考點】本題考查勾股定理的證明,熟練掌握利用圖形的面積得出的關(guān)系,即可證明勾股定理.3、C【解析】【詳解】∵樹的折斷部分與未斷部分、地面恰好構(gòu)成直角三角形,且BC=5m,AB=12m,∴AC===13m,∴這棵樹原來的高度=BC+AC=5+13=18m.故選C.4、C【解析】【分析】如圖,由題意知,,,,可知三點共線,與重合,在中,由勾股定理得,求的值,設(shè),,在中,由勾股定理得,計算求解即可.【詳解】解:如圖,∵是直角∴由題意知,,∴∴三點共線∴與重合在中,由勾股定理得設(shè),在中,由勾股定理得即解得∴的長為故選C.【考點】本題考查了折疊的性質(zhì),勾股定理等知識.解題的關(guān)鍵在于明確三點共線,與重合.5、A【解析】【分析】根據(jù)勾股定理,求出FC=,令DE=x,在Rt中,EC2=,在Rt中,EC2==,代入求解即可.【詳解】解:由題意,得∠ECF=∠CDF=∠CDE=90°,CD=4m,=,由勾股定理,得FC=,EC2=,EC2=,∴=,令DE=x,則EF=x+8,∴,整理,得16x=32,解得x=2.故選:A.【考點】本題考查利用勾股定理求線段長,拓展一元一次方程,正確的運算能力是解決問題的關(guān)鍵.6、D【解析】【分析】由題意可知:中間小正方形的邊長為:,根據(jù)勾股定理以及題目給出的已知數(shù)據(jù)即可求出小正方形的邊長.【詳解】解:由題意可知:中間小正方形的邊長為:,每一個直角三角形的面積為:,,,或(舍去),故選:D.【考點】本題考查勾股定理,解題的關(guān)鍵是熟練運用勾股定理以及完全平方公式,本題屬于基礎(chǔ)題型.7、C【解析】【分析】根據(jù)勾股定理列方程即可得出結(jié)論.【詳解】解:由題意知:OC=x-(5-1),P'C=10,OP'=x,在Rt△OCP'中,由勾股定理得:[x-(5-1)]2+102=x2.即.故選:C.【考點】本題主要考查了勾股定理的應(yīng)用,讀懂題意是解題的關(guān)鍵.二、填空題1、15【解析】【分析】根據(jù)勾股定理有S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,等量代換即可求正方形D的面積.【詳解】解:如圖,根據(jù)勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.∴正方形D的面積=49-8-12-14=15(cm2);故答案為:15.【考點】此題主要考查了勾股定理,注意根據(jù)正方形的面積公式以及勾股定理得到圖中正方形的面積之間的關(guān)系:以直角三角形的兩條直角邊為邊長的兩個正方形的面積和等于以斜邊為邊長的面積.2、2.5【解析】【分析】由勾股定理得AC2=20,BC2=5,AB2=25,則AC2+BC2=AB2,再由勾股定理的逆定理證明△ABC是直角三角形,然后由直角三角形斜邊上的中線性質(zhì)即可得出答案.【詳解】解:由勾股定理得:AC2=22+42=20,BC2=12+22=5,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°,AB=5,∵點O為AB邊的中點,∴CO=AB=2.5,故答案為:2.5.【考點】本題考查了勾股定理、勾股定理的逆定理以及直角三角形斜邊上的中線性質(zhì)等知識,熟練掌握勾股定理和勾股定理的逆定理是解題的關(guān)鍵.3、##【解析】【分析】根據(jù)勾股定理計算AC的長,利用面積差可得三角形ABC的面積,由三角形的面積公式即可得到結(jié)論.【詳解】】解:由勾股定理得:AC=,∵S△ABC=3×4-×1×2-×3×2-×2×4=4,∴AC?BD=4,∴×2BD=4,∴BD=,故答案為:.【考點】本題考查了勾股定理,三角形的面積的計算,掌握勾股定理是解題的關(guān)鍵.4、直角三角形【解析】【分析】根據(jù)絕對值、完全平方數(shù)和算數(shù)平方根的非負性,可求解出a、b、c的值,再根據(jù)勾股定理的逆定理判斷即可.【詳解】解:由題意得:,解得:,∵,∴三角形為直角三角形.故答案為直角三角形.【考點】本題主要考查了非負數(shù)的性質(zhì)和勾股定理的逆定理,運用非負數(shù)的性質(zhì)求出a、b、c的值是解題的關(guān)鍵.5、##【解析】【分析】證明△AMC≌△BNC,可得,再根據(jù)三角形三邊關(guān)系得出當點N落在線段AB上時,最小,求出最小值即可.【詳解】解:∵線段繞點C順時針旋轉(zhuǎn)得到線段,∴,,∵,,∴,∴△AMC≌△BNC,∴,∵∴的最小值為;故答案為:.【考點】本題考查了全等三角形的判定與性質(zhì),勾股定理,解題關(guān)鍵是證明三角形全等,得出,根據(jù)三角形三邊關(guān)系取得最小值.6、【解析】【分析】設(shè)折斷處離地面的高度為x尺,根據(jù)勾股定理列出方程即可【詳解】解:設(shè)折斷處離地面的高度為x尺,根據(jù)題意可得:故答案為:【考點】本題考查了勾股定理的應(yīng)用,掌握勾股定理是解題的關(guān)鍵.7、2.5【解析】【分析】首先先過點D作AB的垂直線段DE,根據(jù)勾股定理把BC求出,然后根據(jù)角平分線的性質(zhì)定理得出DE=DC,再根據(jù)ABC的面積等于ACD的面積加上ABD的面積,把CD求出,最后BD的長度即可求出.【詳解】過點D作DEAB于E,在ABC中,C=,AB=5,AC=3,∴,∵AD平分BAC,∴DE=DC,∵,即,解得CD=1.5,∴BD=4-CD=4-1.5=2.5,故答案為:2.5.【考點】本題考查了勾股定理和角平分線的性質(zhì)定理,正確作出輔助線,根據(jù)面積相等把CD求出是解題的關(guān)鍵.8、20m.【解析】【分析】試題分析:要求登梯的長,需將圓柱的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果,在求線段長時,借助于勾股定理.【詳解】將圓柱表面按一周半開展開呈長方形,
∵圓柱高16m,底面周長8m,設(shè)螺旋形登梯長為xm,∴x2=(1×8+4)2+162=400,∴登梯至少=20m故答案為:20m【考點】本題考查圓柱形側(cè)面展開圖新問題,涉及勾股定理,掌握按要求將圓柱側(cè)面展開圖形的方法,會利用圓周,高與對角線組成直角三角形,用勾股定理解決問題是關(guān)鍵.三、解答題1、小敏的猜想錯誤,立柱AB段的正確長度長為9米.【解析】【分析】延長FC交AB于點G,設(shè)BG=x米,在Rt△BGC中利用勾股定理可求x,進而可得AB的正確長度【詳解】解:如圖,延長FC交AB于點G則CG⊥AB,AG=CD=1米,GC=AD=15米設(shè)BG=x米,則BC=(26-1-x)米在Rt△BGC中,∵∴解得
∴BA=BG+GA=8+1=9(米)∴小敏的猜想錯誤,立柱AB段的正確長度長為9米.【考點】本題主要考查勾股定理的應(yīng)用,解題的關(guān)鍵是作出輔助線,構(gòu)造直角三角形2、(1)見解析(2)【解析】【分析】(1)由AD⊥BC,BE⊥AC得∠BEC=∠ADC=90°,可證∠DAC=∠CBE,根據(jù)AAS可證△ADC≌△BEC;(2)由△ADC≌△BEC,得CD=CE=1,根據(jù)勾股定理可求.(1)證明:∵AD⊥BC,BE⊥AC,∴∠BEC=∠ADC=90°∴∠C+∠DAC=90°=∠C+∠CBE,∴∠DAC=∠CBE在△ADC和△BEC中,∴△ADC≌△BEC(AAS);(2)解:∵△ADC≌△BEC,∴CD=CE=1,∴BC===,∴AC=BC=【考點】本題考查了全等三角形的判定與性質(zhì),勾股定理,熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.3、施工隊6天能挖完.【解析】【分析】根據(jù)題意可得∠BCD=90°,再利用勾股定理得出BC,繼而即可求解.【詳解】解:∵,∴,∵米,米,∴(米)故(天)答:施工隊6天能挖完.【考點】本題考查外角的性質(zhì),勾股定理的應(yīng)用,解題的關(guān)鍵是利用勾股定理求得∠BCD=90°.4、【解析】【分析】設(shè)秋千的繩索長為,則,,利用勾股定理得,再解方程即可得出答案.【詳解】解:設(shè)秋千的繩索長為,則,,在中,,即,解得,答:繩索的長度是.【考點】此題主要考查了勾股定理的應(yīng)用,關(guān)鍵是正確理解題意,表示出AC、AB的長,掌握直角三角形中兩直角邊的平方和等于斜邊的平方.5、(1),見解析;(2)【解析】【分析】(1)易證,再根據(jù)全等性質(zhì)即可求得;(2)由BC和CE可得BE,再由全等的,再根據(jù)勾股定理即可求得;【詳解】(1).證明:.在和中,.(2),..【考點】本題考查三角形全等和勾股定理,掌握三角形全等條件是解題的關(guān)鍵.6、(1)A、C兩地之間的距離為14.1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院入住管理制度
- 企業(yè)內(nèi)部培訓(xùn)與成長制度
- 公共交通票務(wù)管理制度
- 2026年金融風險控制師知識水平測試題集
- 2026年兒科常見手術(shù)操作技巧與考試題
- 2026年營養(yǎng)師職業(yè)資格考試營養(yǎng)學(xué)與膳食管理題庫集
- 2026年中級財務(wù)會計考試題目及解析
- 2026年會計職稱考試題庫與答案解析
- 2026年農(nóng)業(yè)項目驗收協(xié)議(全面·達標版)
- 護理措施精準化選擇
- 2025年司法鑒定人資格考試歷年真題試題及答案
- 江蘇省連云港市2024-2025學(xué)年第一學(xué)期期末調(diào)研考試高二歷史試題
- 生成式人工智能與初中歷史校本教研模式的融合與創(chuàng)新教學(xué)研究課題報告
- 2025年湖北煙草專賣局筆試試題及答案
- 2026年開工第一課復(fù)工復(fù)產(chǎn)安全專題培訓(xùn)
- 特殊人群(老人、兒童)安全護理要點
- 2026年檢察院書記員面試題及答案
- 《煤礦安全規(guī)程(2025)》防治水部分解讀課件
- 2025至2030中國新癸酸縮水甘油酯行業(yè)項目調(diào)研及市場前景預(yù)測評估報告
- 2025年保安員職業(yè)技能考試筆試試題(100題)含答案
- 尾礦庫閉庫綜合治理工程項目可行性研究報告
評論
0/150
提交評論