版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安陽市2026屆中考考前最后一卷數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.每到四月,許多地方楊絮、柳絮如雪花般漫天飛舞,人們不堪其憂,據測定,楊絮纖維的直徑約為0.0000105m,該數值用科學記數法表示為()A.1.05×105 B.0.105×10﹣4 C.1.05×10﹣5 D.105×10﹣72.如圖,已知函數與的圖象在第二象限交于點,點在的圖象上,且點B在以O點為圓心,OA為半徑的上,則k的值為A. B. C. D.3.下列圖形中,哪一個是圓錐的側面展開圖?A. B. C. D.4.如果一組數據6,7,x,9,5的平均數是2x,那么這組數據的中位數為()A.5 B.6 C.7 D.95.利用“分形”與“迭代”可以制作出很多精美的圖形,以下是制作出的幾個簡單圖形,其中是軸對稱但不是中心對稱的圖形是()A. B. C. D.6.如圖,在△ABC中,AD是BC邊的中線,∠ADC=30°,將△ADC沿AD折疊,使C點落在C′的位置,若BC=4,則BC′的長為()A.2 B.2 C.4 D.37.一個不透明的袋中有四張完全相同的卡片,把它們分別標上數字1、2、3、1.隨機抽取一張卡片,然后放回,再隨機抽取一張卡片,則兩次抽取的卡片上數字之積為偶數的概率是()A. B. C. D.8.下面四個幾何體:其中,俯視圖是四邊形的幾何體個數是()A.1 B.2 C.3 D.49.下列圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.10.下列計算正確的是()A.﹣5x﹣2x=﹣3x B.(a+3)2=a2+9 C.(﹣a3)2=a5 D.a2p÷a﹣p=a3p二、填空題(本大題共6個小題,每小題3分,共18分)11.計算:=_________
.12.如圖,AB是⊙O的直徑,點C是⊙O上的一點,若BC=6,AB=10,OD⊥BC于點D,則OD的長為______.13.菱形的兩條對角線長分別是方程的兩實根,則菱形的面積為______.14.如圖,點、、在直線上,點,,在直線上,以它們?yōu)轫旤c依次構造第一個正方形,第二個正方形,若的橫坐標是1,則的坐標是______,第n個正方形的面積是______.15.如圖,正方形ABCD的邊長為3,點E,F分別在邊BCCD上,BE=CF=1,小球P從點E出發(fā)沿直線向點F運動,完成第1次與邊的碰撞,每當碰到正方形的邊時反彈,反彈時反射角等于入射角,則小球P與正方形的邊第2次碰撞到__邊上,小球P與正方形的邊完成第5次碰撞所經過的路程為__.16.拋物線y=3x2﹣6x+a與x軸只有一個公共點,則a的值為_____.三、解答題(共8題,共72分)17.(8分)尺規(guī)作圖:校園有兩條路OA、OB,在交叉路口附近有兩塊宣傳牌C、D,學校準備在這里安裝一盞路燈,要求燈柱的位置P離兩塊宣傳牌一樣遠,并且到兩條路的距離也一樣遠,請你幫助畫出燈柱的位置P.(不寫畫圖過程,保留作圖痕跡)18.(8分)已知:如圖,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足為點D,E是BD的中點,聯結AE并延長,交邊BC于點F.(1)求∠EAD的余切值;(2)求的值.19.(8分)某工廠去年的總收入比總支出多50萬元,計劃今年的總收入比去年增加10%,總支出比去年節(jié)約20%,按計劃今年總收入將比總支出多100萬元.今年的總收入和總支出計劃各是多少萬元?20.(8分)已知,如圖1,直線y=x+3與x軸、y軸分別交于A、C兩點,點B在x軸上,點B的橫坐標為,拋物線經過A、B、C三點.點D是直線AC上方拋物線上任意一點.(1)求拋物線的函數關系式;(2)若P為線段AC上一點,且S△PCD=2S△PAD,求點P的坐標;(3)如圖2,連接OD,過點A、C分別作AM⊥OD,CN⊥OD,垂足分別為M、N.當AM+CN的值最大時,求點D的坐標.21.(8分)濟南某中學在參加“創(chuàng)文明城,點贊泉城”書畫比賽中,楊老師從全校30個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作鼎的數量進行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.請根據以上信息,回答下列問題:(l)楊老師采用的調查方式是______(填“普查”或“抽樣調查”);(2)請補充完整條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中C班作品數量所對應的圓心角度數______.(3)請估計全校共征集作品的件數.(4)如果全枝征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現要在獲得一樣等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學生性別相同的概率.22.(10分)已知關于x的方程x2﹣6mx+9m2﹣9=1.(1)求證:此方程有兩個不相等的實數根;(2)若此方程的兩個根分別為x1,x2,其中x1>x2,若x1=2x2,求m的值.23.(12分)如圖,AB=AD,AC=AE,BC=DE,點E在BC上.求證:△ABC≌△ADE;(2)求證:∠EAC=∠DEB.24.已知:如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B兩點(A在B左),y軸交于點C(0,-3).(1)求拋物線的解析式;(2)若點D是線段BC下方拋物線上的動點,求四邊形ABCD面積的最大值;(3)若點E在x軸上,點P在拋物線上.是否存在以B、C、E、P為頂點且以BC為一邊的平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10﹣n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.所以0.0000105=1.05×10﹣5,故選C.考點:科學記數法.2、A【解析】
由題意,因為與反比例函數都是關于直線對稱,推出A與B關于直線對稱,推出,可得,求出m即可解決問題;【詳解】函數與的圖象在第二象限交于點,點與反比例函數都是關于直線對稱,與B關于直線對稱,,,點故選:A.【點睛】本題考查反比例函數與一次函數的交點問題,反比例函數的圖像與性質,圓的對稱性及軸對稱的性質.解題的關鍵是靈活運用所學知識解決問題,本題的突破點是發(fā)現A,B關于直線對稱.3、B【解析】
根據圓錐的側面展開圖的特點作答.【詳解】A選項:是長方體展開圖.B選項:是圓錐展開圖.C選項:是棱錐展開圖.D選項:是正方體展開圖.故選B.【點睛】考查了幾何體的展開圖,注意圓錐的側面展開圖是扇形.4、B【解析】
直接利用平均數的求法進而得出x的值,再利用中位數的定義求出答案.【詳解】∵一組數據1,7,x,9,5的平均數是2x,∴,解得:,則從大到小排列為:3,5,1,7,9,故這組數據的中位數為:1.故選B.【點睛】此題主要考查了中位數以及平均數,正確得出x的值是解題關鍵.5、A【解析】
根據:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形;在平面內,把一個圖形繞著某個點旋轉180°,如果旋轉后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形.逐個按要求分析即可.【詳解】選項A,是軸對稱圖形,不是中心對稱圖形,故可以選;選項B,是軸對稱圖形,也是中心對稱圖形,故不可以選;選項C,不是軸對稱圖形,是中心對稱圖形,故不可以選;選項D,是軸對稱圖形,也是中心對稱圖形,故不可以選.故選A【點睛】本題考核知識點:軸對稱圖形和中心對稱圖形.解題關鍵點:理解軸對稱圖形和中心對稱圖形定義.
錯因分析容易題.失分的原因是:沒有掌握軸對稱圖形和中心對稱圖形的定義.
6、A【解析】連接CC′,∵將△ADC沿AD折疊,使C點落在C′的位置,∠ADC=30°,∴∠ADC′=∠ADC=30°,CD=C′D,∴∠CDC′=∠ADC+∠ADC′=60°,∴△DCC′是等邊三角形,∴∠DC′C=60°,∵在△ABC中,AD是BC邊的中線,即BD=CD,∴C′D=BD,∴∠DBC′=∠DC′B=∠CDC′=30°,∴∠BC′C=∠DC′B+∠DC′C=90°,∵BC=4,∴BC′=BC?cos∠DBC′=4×=2,故選A.【點睛】本題考查了折疊的性質、等邊三角形的判定與性質、等腰三角形的性質、直角三角形的性質以及三角函數等知識,準確添加輔助線,掌握折疊前后圖形的對應關系是解題的關鍵.7、C【解析】【分析】畫樹狀圖展示所有16種等可能的結果數,再找出兩次抽取的卡片上數字之積為偶數的結果數,然后根據概率公式求解.【詳解】畫樹狀圖為:共有16種等可能的結果數,其中兩次抽取的卡片上數字之積為偶數的結果數為12,所以兩次抽取的卡片上數字之積為偶數的概率=,故選C.【點睛】本題考查了列表法與樹狀圖法求概率,用到的知識點為:概率=所求情況數與總情況數之比.8、B【解析】試題分析:根據俯視圖是分別從物體上面看,所得到的俯視圖是四邊形的幾何體有正方體和三棱柱,故選B.考點:簡單幾何體的三視圖9、B【解析】
根據軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,故錯誤;B、是中心對稱圖形,不是軸對稱圖形,故正確;C、是軸對稱圖形,也是中心對稱圖形,故錯誤;D、是軸對稱圖形,也是中心對稱圖形,故錯誤.故選B.【點睛】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.10、D【解析】
直接利用合并同類項法則以及完全平方公式和整式的乘除運算法則分別計算即可得出答案.【詳解】解:A.﹣5x﹣2x=﹣7x,故此選項錯誤;B.(a+3)2=a2+6a+9,故此選項錯誤;C.(﹣a3)2=a6,故此選項錯誤;D.a2p÷a﹣p=a3p,正確.故選D.【點睛】本題主要考查了合并同類項以及完全平方公式和整式的乘除運算,正確掌握運算法則是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】
利用平方差公式求解,即可求得答案.【詳解】=()2-()2=5-3=2.故答案為2.【點睛】此題考查了二次根式的乘除運算.此題難度不大,注意掌握平方差公式的應用.12、1【解析】
根據垂徑定理求得BD,然后根據勾股定理求得即可.【詳解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==1.故答案為1.【點睛】本題考查垂徑定理及其勾股定理,熟記定理并靈活應用是本題的解題關鍵.13、2【解析】
解:x2﹣14x+41=0,則有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面積為:(6×1)÷2=2.菱形的面積為:2.故答案為2.點睛:本題考查菱形的性質.菱形的對角線互相垂直,以及對角線互相垂直的四邊形的面積的特點和根與系數的關系.14、(4,2),【解析】
由的橫坐標是1,可得,利用兩個函數解析式求出點、的坐標,得出的長度以及第1個正方形的面積,求出的坐標;然后再求出的坐標,得出第2個正方形的面積,求出的坐標;再求出、的坐標,得出第3個正方形的面積;從而得出規(guī)律即可得到第n個正方形的面積.【詳解】解:點、、在直線上,的橫坐標是1,
,
點,,在直線上,
,,
,,
第1個正方形的面積為:;
,
,,,
第2個正方形的面積為:;
,
,,
第3個正方形的面積為:;
,
第n個正方形的面積為:.
故答案為,.【點睛】本題考查了一次函數圖象上點的坐標特征,正方形的性質以及規(guī)律型中圖形的變化規(guī)律,解題的關鍵是找出規(guī)律本題難度適中,解決該題型題目時,根據給定的條件求出第1、2、3個正方形的邊長,根據數據的變化找出變化規(guī)律是關鍵.15、AB,【解析】
根據已知中的點E,F的位置,可知入射角的正切值為,通過相似三角形,來確定反射后的點的位置.再由勾股定理就可以求出小球第5次碰撞所經過路程的總長度.【詳解】根據已知中的點E,F的位置,可知入射角的正切值為,第一次碰撞點為F,在反射的過程中,根據入射角等于反射角及平行關系的三角形的相似可得,第二次碰撞點為G,在AB上,且AG=AB,第三次碰撞點為H,在AD上,且AH=AD,第四次碰撞點為M,在DC上,且DM=DC,第五次碰撞點為N,在AB上,且BN=AB,第六次回到E點,BE=BC.由勾股定理可以得出EF=,FG=,GH=,HM=,MN=,NE=,故小球第5次經過的路程為:++++=,故答案為AB,.【點睛】本題考查了正方形與軸對稱的性質,解題的關鍵是熟練的掌握正方形與軸對稱的性質.16、3【解析】
根據拋物線與x軸只有一個公共交點,則判別式等于0,據此即可求解.【詳解】∵拋物線y=3x2﹣6x+a與x軸只有一個公共點,∴判別式Δ=36-12a=0,解得:a=3,故答案為3【點睛】本題考查了二次函數圖象與x軸的公共點的個數的判定方法,如果△>0,則拋物線與x軸有兩個不同的交點;如果△=0,與x軸有一個交點;如果△<0,與x軸無交點.三、解答題(共8題,共72分)17、見解析.【解析】
分別作線段CD的垂直平分線和∠AOB的角平分線,它們的交點即為點P.【詳解】如圖,點P為所作.【點睛】本題考查了作圖?應用與設計作圖,熟知角平分線的性質與線段垂直平分線的性質是解答此題的關鍵.18、(1)∠EAD的余切值為;(2)=.【解析】
(1)在Rt△ADB中,根據AB=13,cos∠BAC=,求出AD的長,由勾股定理求出BD的長,進而可求出DE的長,然后根據余切的定義求∠EAD的余切即可;(2)過D作DG∥AF交BC于G,由平行線分線段成比例定理可得CD:AD=CG:FG=3:5,從而可設CD=3x,AD=5x,再由EF∥DG,BE=ED,可知BF=FG=5x,然后可求BF:CF的值.【詳解】(1)∵BD⊥AC,∴∠ADE=90°,Rt△ADB中,AB=13,cos∠BAC=,∴AD=5,由勾股定理得:BD=12,∵E是BD的中點,∴ED=6,∴∠EAD的余切==;(2)過D作DG∥AF交BC于G,∵AC=8,AD=5,∴CD=3,∵DG∥AF,∴=,設CD=3x,AD=5x,∵EF∥DG,BE=ED,∴BF=FG=5x,∴==.【點睛】本題考查了勾股定理,銳角三角函數的定義,平行線分線段成比例定理.解(1)的關鍵是熟練掌握銳角三角函數的概念,解(2)的關鍵是熟練掌握平行線分線段成比例定理.19、今年的總收入為220萬元,總支出為1萬元.【解析】試題分析:設去年總收入為x萬元,總支出為y萬元,根據利潤=收入-支出即可得出關于x、y的二元一次方程組,解之即可得出結論.試題解析:設去年的總收入為x萬元,總支出為y萬元.根據題意,得,解這個方程組,得,∴(1+10%)x=220,(1-20%)y=1.答:今年的總收入為220萬元,總支出為1萬元.20、(1)y=﹣x2﹣x+3;(2)點P的坐標為(﹣,1);(3)當AM+CN的值最大時,點D的坐標為(,).【解析】
(1)利用一次函數圖象上點的坐標特征可求出點A、C的坐標,由點B所在的位置結合點B的橫坐標可得出點B的坐標,根據點A、B、C的坐標,利用待定系數法即可求出拋物線的函數關系式;(2)過點P作PE⊥x軸,垂足為點E,則△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性質即可求出AE、PE的長度,進而可得出點P的坐標;(3)連接AC交OD于點F,由點到直線垂線段最短可找出當AC⊥OD時AM+CN取最大值,過點D作DQ⊥x軸,垂足為點Q,則△DQO∽△AOC,根據相似三角形的性質可設點D的坐標為(﹣3t,4t),利用二次函數圖象上點的坐標特征可得出關于t的一元二次方程,解之取其負值即可得出t值,再將其代入點D的坐標即可得出結論.【詳解】(1)∵直線y=x+3與x軸、y軸分別交于A、C兩點,∴點A的坐標為(﹣4,0),點C的坐標為(0,3).∵點B在x軸上,點B的橫坐標為,∴點B的坐標為(,0),設拋物線的函數關系式為y=ax2+bx+c(a≠0),將A(﹣4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:,解得:,∴拋物線的函數關系式為y=﹣x2﹣x+3;(2)如圖1,過點P作PE⊥x軸,垂足為點E,∵△PCD、△PAD有相同的高,且S△PCD=2S△PAD,∴CP=2AP,∵PE⊥x軸,CO⊥x軸,∴△APE∽△ACO,∴,∴AE=AO=,PE=CO=1,∴OE=OA﹣AE=,∴點P的坐標為(﹣,1);(3)如圖2,連接AC交OD于點F,∵AM⊥OD,CN⊥OD,∴AF≥AM,CF≥CN,∴當點M、N、F重合時,AM+CN取最大值,過點D作DQ⊥x軸,垂足為點Q,則△DQO∽△AOC,∴,∴設點D的坐標為(﹣3t,4t).∵點D在拋物線y=﹣x2﹣x+3上,∴4t=﹣3t2+t+3,解得:t1=﹣(不合題意,舍去),t2=,∴點D的坐標為(,),故當AM+CN的值最大時,點D的坐標為(,).【點睛】本題考查了待定系數法求二次函數解析式、一次(二次)函數圖象上點的坐標特征、三角形的面積以及相似三角形的性質,解題的關鍵是:(1)根據點A、B、C的坐標,利用待定系數法求出拋物線的函數關系式;(2)利用相似三角形的性質找出AE、PE的長;(3)利用相似三角形的性質設點D的坐標為(﹣3t,4t).21、(1)抽樣調查(2)150°(3)180件(4)【解析】分析:(1)楊老師從全校30個班中隨機抽取了4個班,屬于抽樣調查.(2)由題意得:所調查的4個班征集到的作品數為:6÷=24(件),C班作品的件數為:24-4-6-4=10(件);繼而可補全條形統(tǒng)計圖;(3)先求出抽取的4個班每班平均征集的數量,再乘以班級總數可得;(4)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩名學生性別相同的情況,再利用概率公式即可求得答案.詳解:(1)楊老師從全校30個班中隨機抽取了4個班,屬于抽樣調查.故答案為抽樣調查.(2)所調查的4個班征集到的作品數為:6÷=24件,C班有24﹣(4+6+4)=10件,補全條形圖如圖所示,扇形統(tǒng)計圖中C班作品數量所對應的圓心角度數360°×=150°;故答案為150°;(3)∵平均每個班=6件,∴估計全校共征集作品6×30=180件.(4)畫樹狀圖得:∵共有20種等可能的結果,兩名學生性別相同的有8種情況,∴恰好選取的兩名學生性別相同的概率為.點睛:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數據;扇形統(tǒng)計圖直接反映部分占總體的百分比大?。瑫r古典概型求法:(1)算出所有基本事件的個數n;(2)求出事件A包含的所有基本事件數m;(3)代入公式P(A)=,求出P(A)..22、(1)見解析;(2)m=2【解析】
(1)根據一元二次方程根的判別式進行分析解答即可;(2)用“因式分解法”解原方程,求得其兩根,再結合已知條件分析解答即可.【詳解】(1)∵在方程x2﹣6mx+9m2﹣9=1中,△=(﹣6m)2﹣4(9m2﹣9)=26m2﹣26m2+26=26>1.∴方程有兩個不相等的實數根;(2)關于x的方程:x2﹣6mx+9m2﹣9=1可化為:[x﹣(2m+2)][x﹣(2m﹣2)]=1,解得:x=2m+2和x=2m-2,∵2m+2>2m﹣2,x1>x2,∴x1=2m+2,x2=2m﹣2,又∵x1=2x2,∴2m+2=2(2m﹣2)解得:m=2.【點睛】(1)熟知“一元二次方程根的判別式:在一元二次方程中,當時,原方程有兩個不相等的實數根,當時,原方程有兩個相等的實數根,當時,原方程沒有實數根”是解答第1小題的關鍵;(2)能用“因式分解法”求得關于x的方程x2﹣6mx+9m2﹣9=1的兩個根是解答第2小題的關鍵.23、(1)詳見解析;(2)詳見解析.【解析】
(1)用“SSS”證明即可;(2)借助全等三角形的性質及角的和差求出∠DAB=∠EAC,再利用三角形內角和定理求出∠DEB=∠DAB,即可說明∠EAC=∠DEB.【詳解】解:(1)在△ABC和△ADE中∴△ABC≌△ADE(SSS);(2)由△ABC≌△ADE,則∠D=∠B,∠DAE=∠BAC.∴∠DAE﹣∠ABE=∠BAC﹣∠BAE,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)院消防培訓責任制度
- 服務站感染管理培訓制度
- 企業(yè)培訓主播室制度
- 某公司營銷人員培訓制度
- 學院培訓日常管理制度
- 隔離點相關培訓制度
- 易制毒使用培訓制度
- 糧庫作業(yè)前培訓制度
- 票務公司培訓管理制度
- 如何給員工培訓車輛管理制度
- 2023年版測量結果的計量溯源性要求
- 建筑能耗與碳排放研究報告
- GB 29415-2013耐火電纜槽盒
- 中國古代經濟試題
- 真空采血管的分類及應用及采血順序課件
- 軟件定義汽車:產業(yè)生態(tài)創(chuàng)新白皮書
- 安裝工程實體質量情況評價表
- 動力觸探試驗課件
- 城市軌道交通安全管理課件(完整版)
- 八大浪費培訓(整理)
- 幼兒園機器人課件.ppt
評論
0/150
提交評論