綜合解析貴州省都勻市中考數(shù)學真題分類(勾股定理)匯編單元測試試題(解析卷)_第1頁
綜合解析貴州省都勻市中考數(shù)學真題分類(勾股定理)匯編單元測試試題(解析卷)_第2頁
綜合解析貴州省都勻市中考數(shù)學真題分類(勾股定理)匯編單元測試試題(解析卷)_第3頁
綜合解析貴州省都勻市中考數(shù)學真題分類(勾股定理)匯編單元測試試題(解析卷)_第4頁
綜合解析貴州省都勻市中考數(shù)學真題分類(勾股定理)匯編單元測試試題(解析卷)_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

貴州省都勻市中考數(shù)學真題分類(勾股定理)匯編單元測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖所示的網(wǎng)格是正方形網(wǎng)格,A,B,C,D是網(wǎng)格線交點,則與的大小關系為(

)A. B. C. D.無法確定2、如圖,有一只小鳥從小樹頂飛到大樹頂上,它飛行的最短路程是()A.13米 B.12米 C.5米 D.米3、在△ABC中,,那么△ABC是(

)A.等腰三角形 B.鈍角三角形 C.直角三角形 D.等腰直角三角形4、如圖,在中,,cm,cm,點、分別在、邊上.現(xiàn)將沿翻折,使點落在點處.連接,則長度的最小值為(

)A.0 B.2 C.4 D.65、下列四組數(shù)中,是勾股數(shù)的是()A.5,12,13 B.4,5,6 C.2,3,4 D.1,,6、如圖,小巷左右兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底墻到左墻角的距離為1.5m,頂端距離地面2m,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面0.7m,那么小巷的寬度為(

)A.3.2m B.3.5m C.3.9m D.4m7、如圖,在2×2的正方形網(wǎng)格中有9個格點,已經(jīng)取定點A和B,在余下的點中任取一點C,使△ABC為直角三角形的概率是(

)A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,CD是△ABC的中線,將△ACD沿CD折疊至,連接交CD于點E,交CB于點F,點F是的中點.若的面積為12,,則點F到AC的距離為______.2、如圖,在的網(wǎng)格中每個小正方形的邊長都為1,的頂點、、都在格點上,點為邊的中點,則線段的長為________.3、已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,則Rt△ABC的面積等于_________cm2.4、無蓋圓柱形杯子的展開圖如圖所示.將一根長為20cm的細木筷斜放在該杯子內(nèi),木筷露在杯子外面的部分至少有__________cm.5、如圖,臺階A處的螞蟻要爬到B處搬運食物,它爬的最短距離是_____.6、如圖,圓柱形無蓋玻璃容器,高18cm,底面周長為60cm,在外側距下底1cm的點C處有一蜘蛛,與蜘蛛相對的圓柱形容器的上口外側距開口1cm的F處有一蒼蠅,則急于捕獲蒼蠅充饑的蜘蛛所走的最短路線的長度為__________cm(容器壁厚度忽略不計).7、在Rt△ABC中,∠C=90°,且AC∶BC=1∶7,AB=100米,則AC=_________米.8、如圖,學校有一塊長方形草坪,有極少數(shù)人為了避開拐角走“捷徑”,在草坪內(nèi)走出了一條“路”,他們僅僅少走了________步路(假設步為米),卻踩傷了花草.三、解答題(7小題,每小題10分,共計70分)1、下圖是某“飛越叢林”俱樂部新近打造的一款兒童游戲項目,工作人員告訴小敏,該項目AB段和BC段均由不銹鋼管材打造,總長度為26米,長方形CDEF為一木質(zhì)平臺的主視圖.小敏經(jīng)過現(xiàn)場測量得知:CD=1米,AD=15米,于是小敏大膽猜想立柱AB段的長為10米,請判斷小敏的猜想是否正確?如果正確,請寫出理由,如果錯誤,請求出立柱AB段的正確長度.2、如圖,某商家想在商場大樓上懸掛一塊廣告牌,廣告牌高.根據(jù)商場規(guī)定廣告牌最高點不得高于地面20m,經(jīng)測量,測角儀支架高,在F處測得廣告牌底部點B的仰角為30°,在E處測得標語牌頂部點A的仰角為45°,,請計算說明,商家這樣放廣告牌是否符合規(guī)定?(圖中點A,B,C,D,E,F(xiàn),G,H在同一平面內(nèi))3、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.某學習小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.4、如圖,把長方形紙片沿折疊,使點落在邊上的點處,點落在點處.(1)試說明;(2)設,,,試猜想,,之間的關系,并說明理由.5、如圖,CE⊥AB于點E,BD⊥AC于點D,AB=AC.(1)求證:△ABD≌△ACE.(2)連接BC,若AD=6,CD=4,求△ABC的面積.6、如圖,已知等腰△ABC的底邊BC=10cm,D是腰AC上一點,且CD=6cm,BD=8cm.(1)判斷△BCD的形狀,并說明理由;(2)求△ABC的周長.7、臺風是一種自然災害,它以臺風中心為圓心在周圍上千米的范圍內(nèi)形成極端氣候,有極強的破壞力,有一臺風中心沿東西方向AB由點A行駛向點B,已知點C為一海港,且點C與直線AB上兩點A、B的距離分別為300km和400km,又AB=500km,以臺風中心為圓心周圍250km以內(nèi)為受影響區(qū)域.(1)海港C會受臺風影響嗎?為什么?(2)若臺風的速度為20km/h,臺風影響該海港持續(xù)的時間有多長?-參考答案-一、單選題1、C【解析】【分析】根據(jù)每個小網(wǎng)格都為正方形,設每個網(wǎng)格為1,由勾股定理可以求出AD、AC、CD的長,再由勾股定理的逆定理得到△ACD為等腰直角三角形,同理可得△ABC為等腰直角三角形,即∠BAC=∠DAC.【詳解】解:如圖,設正方形每個網(wǎng)格的邊長都為1,連接CD、BC,則,,,,為等腰直角三角形,,同理:,,,,為等腰直角三角形,,.故選:C.【考點】本題考查勾股定理的性質(zhì)、勾股定理的逆定理以及等腰直角三角形的判定,解本題的關鍵要掌握勾股定理及逆定理的基本知識.2、A【解析】【分析】根據(jù)題意,畫出圖形,構造直角三角形,用勾股定理求解即可.【詳解】如圖所示,過D點作DE⊥AB,垂足為E,∵AB=13,CD=8,又∵BE=CD,DE=BC,∴AE=AB?BE=AB?CD=13?8=5,∴在Rt△ADE中,DE=BC=12,∴∴AD=13(負值舍去),故小鳥飛行的最短路程為13m,故選A.【考點】考查勾股定理,畫出示意圖,數(shù)形結合是解題的關鍵.3、D【解析】【分析】根據(jù)等腰三角形的判定和勾股定理逆定理得出三角形的形狀即可.【詳解】∵a:b:c=1:1:,∴三角形ABC是等腰三角形.設三邊長為a,a,∵,∴三角形ABC是直角三角形.綜上所述:△ABC是等腰直角三角形.故選D.【考點】本題考查了等腰三角形的判定和勾股定理逆定理.此題關鍵是利用勾股定理的逆定理解答.4、C【解析】【分析】當H落在AB上,點D與B重合時,AH長度的值最小,根據(jù)勾股定理得到AB=10cm,由折疊的性質(zhì)知,BH=BC=6cm,于是得到結論.【詳解】解:當H落在AB上,點D與B重合時,AH長度的值最小,∵∠C=90°,AC=8cm,BC=6cm,∴AB=10cm,由折疊的性質(zhì)知,BH=BC=6cm,∴AH=AB-BH=4cm.故選:C.【考點】本題考查了翻折變換(折疊問題),勾股定理,熟練掌握折疊的性質(zhì)是解題的關鍵.5、A【解析】【分析】欲判斷是否為勾股數(shù),必須根據(jù)勾股數(shù)是正整數(shù),同時還需驗證兩小邊的平方和是否等于最長邊的平方.【詳解】解:A、52+122=132,都是正整數(shù),是勾股數(shù),故此選項符合題意;B、42+52≠62,不是勾股數(shù),故此選項不合題意;C、22+32≠42,不是勾股數(shù),故此選項不合題意;D、,不是正整數(shù),不是勾股數(shù),故此選項不合題意;故選:A.【考點】此題主要考查了勾股數(shù),解答此題要用到勾股數(shù)組的定義,如果a,b,c為正整數(shù),且滿足a2+b2=c2,那么,a、b、c叫做一組勾股數(shù).6、C【解析】【分析】如圖,在Rt△ACB中,先根據(jù)勾股定理求出AB,然后在Rt△A′BD中根據(jù)勾股定理求出BD,進而可得答案.【詳解】解:如圖,在Rt△ACB中,∵∠ACB=90°,BC=1.5米,AC=2米,∴AB2=1.52+22=6.25,∴AB=2.5米,在Rt△A′BD中,∵∠A′DB=90°,A′D=0.7米,BD2+A′D2=A′B2,∴BD2+0.72=6.25,∴BD2=5.76,∵BD>0,∴BD=2.4米,∴CD=BC+BD=1.5+2.4=3.9米.故選:C.【考點】本題考查了勾股定理的應用,正確理解題意、熟練掌握勾股定理是解題的關鍵.7、C【解析】【分析】找到可以組成直角三角形的點,根據(jù)概率公式解答即可.【詳解】解:如圖,,,,均可與點和組成直角三角形.,故選:C.【考點】本題考查了概率公式,解題的關鍵是掌握如果一個事件有種可能,而且這些事件的可能性相同,其中事件出現(xiàn)種結果,那么事件的概率(A).二、填空題1、【解析】【分析】過點F作FH⊥AC于點H,由翻折的性質(zhì)可知S△AA'D=24,由D為AB的中點,則S△AA'B=2S△AA'D=48,得AA'=12,再通過AAS證明△A'BF≌△ECF,得CE=A'B=8,在Rt△CAE中,由勾股定理求出AC的長,最后通過面積法即可求出FH的長.【詳解】解:如圖,過點F作FH⊥AC于點H,根據(jù)翻折的性質(zhì)得:AD=A'D,AA'⊥CD,AE=A'E,∵CD是△ABC的中線,∴CD=BD,∴AD=BD=A'D,∴∠AA'B=90°,又∵S△A'DE=12,∴S△ADE=12,∴S△ADA'=24,又∵D為AB的中點,∴S△AA'B=2S△AA'D=48,即×AA′×A′B=48,∴AA'=12,又∵F為A'E的中點,∴A'F=EF,在△A'BF與△ECF中,,∴△A'BF≌△ECF(AAS),∴CE=A'B=8,∵AA'=2A'E,A'E=2EF=6,∴EF=3,AF=9,在Rt△CAE中,由勾股定理得:CA==10,在△CAF中,CA?HF=AF?CE,∴HF==,即點F到AC的距離為,故答案為:.【考點】本題主要考查了翻折的性質(zhì),全等三角形的判定與性質(zhì),勾股定理等知識,運用等積法求垂線段的長是解題的關鍵.2、2.5【解析】【分析】由勾股定理得AC2=20,BC2=5,AB2=25,則AC2+BC2=AB2,再由勾股定理的逆定理證明△ABC是直角三角形,然后由直角三角形斜邊上的中線性質(zhì)即可得出答案.【詳解】解:由勾股定理得:AC2=22+42=20,BC2=12+22=5,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°,AB=5,∵點O為AB邊的中點,∴CO=AB=2.5,故答案為:2.5.【考點】本題考查了勾股定理、勾股定理的逆定理以及直角三角形斜邊上的中線性質(zhì)等知識,熟練掌握勾股定理和勾股定理的逆定理是解題的關鍵.3、24【解析】【分析】利用勾股定理,可得:a2+b2=c2=100,即(a+b)2﹣2ab=100,可得ab=48,即可得出面積.【詳解】解:∵∠C=90°,∴a2+b2=c2=100,∴(a+b)2﹣2ab=100,∴196﹣2ab=100,∴ab=48,∴S△ABC==24cm2;故答案為:24.【考點】本題考查勾股定理、完全平方公式的變形求值、三角形面積計算的運用,熟知勾股定理是解題的關鍵.4、5【解析】【分析】根據(jù)題意直接利用勾股定理得出杯子內(nèi)的筷子長度,進而得出答案.【詳解】解:由題意可得:杯子內(nèi)的筷子長度為:=15,則木筷露在杯子外面的部分至少有:20?15=5(cm).故答案為5.【考點】此題主要考查了勾股定理的應用,正確得出杯子內(nèi)筷子的長是解決問題的關鍵.5、25【解析】【分析】先將圖形平面展開,再用勾股定理根據(jù)兩點之間線段最短進行解答.【詳解】解:如圖所示:臺階平面展開圖為長方形,根據(jù)題意得:,,則螞蟻沿臺階面爬行到B點最短路程是此長方形的對角線長.由勾股定理得:,即,∴,故答案為:25.【考點】本題主要考查了平面展開圖—最短路徑問題,用到臺階的平面展開圖,只要根據(jù)題意判斷出長方形的長和寬即可解答.6、34【解析】【分析】首先展開圓柱的側面,即是矩形,接下來根據(jù)兩點之間線段最短,可知CF的長即為所求;然后結合已知條件求出DF與CD的長,再利用勾股定理進行計算即可.【詳解】如圖為圓柱形玻璃容器的側面展開圖,線段CF是蜘蛛由C到F的最短路程.根據(jù)題意,可知DF=18-1-1=16(cm),CD(cm),∴(cm),即蜘蛛所走的最短路線的長度是34cm.故答案為34.【考點】此題是有關最短路徑的問題,關鍵在于把立體圖形展開成平面圖形,找出最短路徑;7、【解析】【分析】首先根據(jù)BC,AC的比設出BC,AC,然后利用勾股定理列式計算求得a,即可求解.【詳解】解:∵AC∶BC=1∶7,∴設AC=a,則BC=7a,∵∠C=90°,∴AB2=AC2+BC2,∴1002=a2+(7a)2,解得:a=10,∴AC=10米.故答案為:10.【考點】本題主要考查勾股定理,掌握勾股定理的內(nèi)容是解題的關鍵.8、【解析】【分析】少走的距離是AC+BC-AB,在直角△ABC中根據(jù)勾股定理求得AB的長即可.【詳解】解:如圖,∵在中,,∴米,則少走的距離為:米,∵步為米,∴少走了步.故答案為:.【考點】本題考查正確運用勾股定理.善于觀察題目的信息,掌握勾股定理是解題的關鍵.三、解答題1、小敏的猜想錯誤,立柱AB段的正確長度長為9米.【解析】【分析】延長FC交AB于點G,設BG=x米,在Rt△BGC中利用勾股定理可求x,進而可得AB的正確長度【詳解】解:如圖,延長FC交AB于點G則CG⊥AB,AG=CD=1米,GC=AD=15米設BG=x米,則BC=(26-1-x)米在Rt△BGC中,∵∴解得

∴BA=BG+GA=8+1=9(米)∴小敏的猜想錯誤,立柱AB段的正確長度長為9米.【考點】本題主要考查勾股定理的應用,解題的關鍵是作出輔助線,構造直角三角形2、,不符合規(guī)定【解析】【分析】根據(jù)勾股定理即可求解.【詳解】解:設且解得:商家這樣放廣告牌不符合規(guī)定.【考點】本題考查了勾股定理、一元一方程等內(nèi)容,解決問題的關鍵在于理解題意,找到等量關系,列出方程.3、84.【解析】【詳解】解:作AD⊥BC于D,如圖所示:設BD=x,則.

在Rt△ABD中,由勾股定理得:,在Rt△ACD中,由勾股定理得:,∴,

解之得:.

∴.

∴.4、(1)證明見解析;(2),,之間的關系是.理由見解析.【解析】【分析】(1)根據(jù)折疊的性質(zhì)、平行的性質(zhì)及等角對等邊即可說明;(2)根據(jù)折疊的性質(zhì)將AE、AB、BF都轉化到直角三角形中,由勾股定理可得,,之間的關系.【詳解】(1)由折疊的性質(zhì),得,,在長方形紙片中,,∴,∴,∴,∴.(2),,之間的關系是.理由如下:由(1)知,由折疊的性質(zhì),得,,.在中,,所以,所以.【考點】本題主要考查了勾股定理,靈活利用折疊的性質(zhì)進行線段間的轉化是解題的關鍵.5、(1)見解析(2)【解析】【分析】(1)根據(jù)題目所給條件證即可;(2)由可得,由勾股定理可求BD,即可求解;(1)證明:∵,∴,∵,∴.(2)解:∵,∴,在中,,∴.【考點】本題主要考查三角形的全等證明、勾股定理,掌握三角形的全等證明及性質(zhì)是解題的關鍵.6、(1)△BDC為直角三角形,理由見解析;(2)△ABC的周

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論