2026屆浙江省寧波市北侖區(qū)重點達(dá)標(biāo)名校中考數(shù)學(xué)五模試卷含解析_第1頁
2026屆浙江省寧波市北侖區(qū)重點達(dá)標(biāo)名校中考數(shù)學(xué)五模試卷含解析_第2頁
2026屆浙江省寧波市北侖區(qū)重點達(dá)標(biāo)名校中考數(shù)學(xué)五模試卷含解析_第3頁
2026屆浙江省寧波市北侖區(qū)重點達(dá)標(biāo)名校中考數(shù)學(xué)五模試卷含解析_第4頁
2026屆浙江省寧波市北侖區(qū)重點達(dá)標(biāo)名校中考數(shù)學(xué)五模試卷含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆浙江省寧波市北侖區(qū)重點達(dá)標(biāo)名校中考數(shù)學(xué)五模試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.一、單選題二次函數(shù)的圖象如圖所示,對稱軸為x=1,給出下列結(jié)論:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正確的結(jié)論有:A.4個 B.3個 C.2個 D.1個2.如圖,△ABC的三個頂點分別為A(1,2)、B(4,2)、C(4,4).若反比例函數(shù)y=在第一象限內(nèi)的圖象與△ABC有交點,則k的取值范圍是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤163.一小組8位同學(xué)一分鐘跳繩的次數(shù)如下:150,176,168,183,172,164,168,185,則這組數(shù)據(jù)的中位數(shù)為()A.172 B.171 C.170 D.1684.如圖,△ABC中,∠C=90°,D、E是AB、BC上兩點,將△ABC沿DE折疊,使點B落在AC邊上點F處,并且DF∥BC,若CF=3,BC=9,則AB的長是()A. B.15 C. D.95.已知一次函數(shù)y=kx+3和y=k1x+5,假設(shè)k<0且k1>0,則這兩個一次函數(shù)的圖像的交點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知△ABC中,∠BAC=90°,用尺規(guī)過點A作一條直線,使其將△ABC分成兩個相似的三角形,其作法不正確的是(

)A.

B.C.

D.7.如圖,在Rt△ABC中,∠B=90o,AB=6,BC=8,點D在BC上,以AC為對角線的所有□ADCE中,DE的最小值是(

)A.4 B.6 C.8 D.108.如圖,矩形ABCD中,AB=10,BC=5,點E,F(xiàn),G,H分別在矩形ABCD各邊上,且AE=CG,BF=DH,則四邊形EFGH周長的最小值為()A.5 B.10 C.10 D.159.如圖,△ABC繞點A順時針旋轉(zhuǎn)45°得到△AB′C′,若∠BAC=90°,AB=AC=,則圖中陰影部分的面積等于()A.2﹣ B.1 C. D.﹣l10.如圖,在平面直角坐標(biāo)系中,△ABC位于第二象限,點B的坐標(biāo)是(﹣5,2),先把△ABC向右平移4個單位長度得到△A1B1C1,再作與△A1B1C1關(guān)于于x軸對稱的△A2B2C2,則點B的對應(yīng)點B2的坐標(biāo)是()A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)11.如圖,邊長為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點上,則∠BED的正切值等于()A. B. C.2 D.12.若代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,A、B是反比例函數(shù)y=(k>0)圖象上的點,A、B兩點的橫坐標(biāo)分別是a、2a,線段AB的延長線交x軸于點C,若S△AOC=1.則k=_______.14.若關(guān)于x的方程有增根,則m的值是▲15.下面是“利用直角三角形作矩形”尺規(guī)作圖的過程.已知:如圖1,在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.小明的作法如下:如圖2,(1)分別以點A、C為圓心,大于AC同樣長為半徑作弧,兩弧交于點E、F;(2)作直線EF,直線EF交AC于點O;(3)作射線BO,在BO上截取OD,使得OD=OB;(4)連接AD,CD.∴四邊形ABCD就是所求作的矩形.老師說,“小明的作法正確.”請回答,小明作圖的依據(jù)是:__________________________________________________.16.如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內(nèi)點F處,連接CF,則CF的長度為_____17.如圖,已知在Rt△ABC中,∠ACB=90°,AB=4,分別以AC,BC為直徑作半圓,面積分別記為S1,S2,則S1+S2等_________.18.將直尺和直角三角尺按如圖方式擺放.若,,則________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)拋物線y=ax2+bx+3(a≠0)經(jīng)過點A(﹣1,0),B(,0),且與y軸相交于點C.(1)求這條拋物線的表達(dá)式;(2)求∠ACB的度數(shù);(3)點D是拋物線上的一動點,是否存在點D,使得tan∠DCB=tan∠ACO.若存在,請求出點D的坐標(biāo),若不存在,說明理由.20.(6分)某校檢測學(xué)生跳繩水平,抽樣調(diào)查了部分學(xué)生的“1分鐘跳繩”成績,并制成了下面的頻數(shù)分布直方圖(每小組含最小值,不含最大值)和扇形圖(1)D組的人數(shù)是人,補(bǔ)全頻數(shù)分布直方圖,扇形圖中m=;(2)本次調(diào)查數(shù)據(jù)中的中位數(shù)落在組;(3)如果“1分鐘跳繩”成績大于或等于120次為優(yōu)秀,那么該校4500名學(xué)生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有多少人?21.(6分)如圖,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點D(保留作圖痕跡,不要求寫作法);(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數(shù).22.(8分)如圖,在四邊形中,為一條對角線,,,.為的中點,連結(jié).(1)求證:四邊形為菱形;(2)連結(jié),若平分,,求的長.23.(8分)如圖,在四邊形ABCD中,∠A=∠BCD=90°,,CE⊥AD于點E.(1)求證:AE=CE;(2)若tanD=3,求AB的長.24.(10分)如圖,二次函數(shù)的圖象與x軸的一個交點為,另一個交點為A,且與y軸相交于C點求m的值及C點坐標(biāo);在直線BC上方的拋物線上是否存在一點M,使得它與B,C兩點構(gòu)成的三角形面積最大,若存在,求出此時M點坐標(biāo);若不存在,請簡要說明理由為拋物線上一點,它關(guān)于直線BC的對稱點為Q當(dāng)四邊形PBQC為菱形時,求點P的坐標(biāo);點P的橫坐標(biāo)為,當(dāng)t為何值時,四邊形PBQC的面積最大,請說明理由.25.(10分)圖1是某市2009年4月5日至14日每天最低氣溫的折線統(tǒng)計圖.圖2是該市2007年4月5日至14日每天最低氣溫的頻數(shù)分布直方圖,根據(jù)圖1提供的信息,補(bǔ)全圖2中頻數(shù)分布直方圖;在這10天中,最低氣溫的眾數(shù)是____,中位數(shù)是____,方差是_____.請用扇形圖表示出這十天里溫度的分布情況.26.(12分)解不等式組并寫出它的整數(shù)解.27.(12分)如圖1,已知扇形MON的半徑為,∠MON=90°,點B在弧MN上移動,聯(lián)結(jié)BM,作OD⊥BM,垂足為點D,C為線段OD上一點,且OC=BM,聯(lián)結(jié)BC并延長交半徑OM于點A,設(shè)OA=x,∠COM的正切值為y.(1)如圖2,當(dāng)AB⊥OM時,求證:AM=AC;(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;(3)當(dāng)△OAC為等腰三角形時,求x的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題解析:①∵二次函數(shù)的圖象的開口向下,∴a<0,∵二次函數(shù)的圖象y軸的交點在y軸的正半軸上,∴c>0,∵二次函數(shù)圖象的對稱軸是直線x=1,∴2a+b=0,b>0∴abc<0,故正確;②∵拋物線與x軸有兩個交點,故正確;③∵二次函數(shù)圖象的對稱軸是直線x=1,∴拋物線上x=0時的點與當(dāng)x=2時的點對稱,即當(dāng)x=2時,y>0∴4a+2b+c>0,故錯誤;④∵二次函數(shù)圖象的對稱軸是直線x=1,∴2a+b=0,故正確.綜上所述,正確的結(jié)論有3個.故選B.2、C【解析】試題解析:由于△ABC是直角三角形,所以當(dāng)反比例函數(shù)經(jīng)過點A時k最小,進(jìn)過點C時k最大,據(jù)此可得出結(jié)論.∵△ABC是直角三角形,∴當(dāng)反比例函數(shù)經(jīng)過點A時k最小,經(jīng)過點C時k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故選C.3、C【解析】

先把所給數(shù)據(jù)從小到大排列,然后根據(jù)中位數(shù)的定義求解即可.【詳解】從小到大排列:150,164,168,168,,172,176,183,185,∴中位數(shù)為:(168+172)÷2=170.故選C.【點睛】本題考查了中位數(shù),如果一組數(shù)據(jù)有奇數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的數(shù)是這組數(shù)據(jù)的中位數(shù);如果一組數(shù)據(jù)有偶數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).4、C【解析】

由折疊得到EB=EF,∠B=∠DFE,根據(jù)CE+EB=9,得到CE+EF=9,設(shè)EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出EF與CE的長,由FD與BC平行,得到一對內(nèi)錯角相等,等量代換得到一對同位角相等,進(jìn)而確定出EF與AB平行,由平行得比例,即可求出AB的長.【詳解】由折疊得到EB=EF,∠B=∠DFE,在Rt△ECF中,設(shè)EF=EB=x,得到CE=BC-EB=9-x,根據(jù)勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,∴EF=EB=5,CE=4,∵FD∥BC,∴∠DFE=∠FEC,∴∠FEC=∠B,∴EF∥AB,∴,則AB===,故選C.【點睛】此題考查了翻折變換(折疊問題),涉及的知識有:勾股定理,平行線的判定與性質(zhì),平行線分線段成比例,熟練掌握折疊的性質(zhì)是解本題的關(guān)鍵.5、B【解析】

依題意在同一坐標(biāo)系內(nèi)畫出圖像即可判斷.【詳解】根據(jù)題意可作兩函數(shù)圖像,由圖像知交點在第二象限,故選B.【點睛】此題主要考查一次函數(shù)的圖像,解題的關(guān)鍵是根據(jù)題意作出相應(yīng)的圖像.6、D【解析】分析:根據(jù)過直線外一點作這條直線的垂線,及線段中垂線的做法,圓周角定理,分別作出直角三角形斜邊上的垂線,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;即可作出判斷.詳解:A、在角∠BAC內(nèi)作作∠CAD=∠B,交BC于點D,根據(jù)余角的定義及等量代換得出∠B+∠BAD=90°,進(jìn)而得出AD⊥BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;A不符合題意;B、以點A為圓心,略小于AB的長為半徑,畫弧,交線段BC兩點,再分別以這兩點為圓心,大于兩交點間的距離為半徑畫弧,兩弧相交于一點,過這一點與A點作直線,該直線是BC的垂線;根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形是彼此相似的;B不符合題意;C、以AB為直徑作圓,該圓交BC于點D,根據(jù)圓周角定理,過AD兩點作直線該直線垂直于BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;C不符合題意;D、以點B為圓心BA的長為半徑畫弧,交BC于點E,再以E點為圓心,AB的長為半徑畫弧,在BC的另一側(cè)交前弧于一點,過這一點及A點作直線,該直線不一定是BE的垂線;從而就不能保證兩個小三角形相似;D符合題意;故選D.點睛:此題主要考查了相似變換以及相似三角形的判定,正確掌握相似三角形的判定方法是解題關(guān)鍵.7、B【解析】

平行四邊形ADCE的對角線的交點是AC的中點O,當(dāng)OD⊥BC時,OD最小,即DE最小,根據(jù)三角形中位線定理即可求解.【詳解】平行四邊形ADCE的對角線的交點是AC的中點O,當(dāng)OD⊥BC時,OD最小,即DE最小?!逴D⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位線,∴OD=AB=3,∴DE=2OD=6.故選:B.【點睛】本題考查了平行四邊形的性質(zhì),解題的關(guān)鍵是利用三角形中位線定理進(jìn)行求解.8、B【解析】作點E關(guān)于BC的對稱點E′,連接E′G交BC于點F,此時四邊形EFGH周長取最小值,過點G作GG′⊥AB于點G′,如圖所示,∵AE=CG,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴E′G=,∴C四邊形EFGH=2E′G=10,故選B.【點睛】本題考查了軸對稱-最短路徑問題,矩形的性質(zhì)等,根據(jù)題意正確添加輔助線是解題的關(guān)鍵.9、D【解析】∵△ABC繞點A順時針旋轉(zhuǎn)45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴DC′=AC′-AD=-1,∴圖中陰影部分的面積等于:S△AFC′-S△DEC′=×1×1-×(-1)2=-1,故選D.【點睛】此題主要考查了旋轉(zhuǎn)的性質(zhì)以及等腰直角三角形的性質(zhì)等知識,得出AD,AF,DC′的長是解題關(guān)鍵.10、D【解析】

首先利用平移的性質(zhì)得到△A1B1C1中點B的對應(yīng)點B1坐標(biāo),進(jìn)而利用關(guān)于x軸對稱點的性質(zhì)得到△A2B2C2中B2的坐標(biāo),即可得出答案.【詳解】解:把△ABC向右平移4個單位長度得到△A1B1C1,此時點B(-5,2)的對應(yīng)點B1坐標(biāo)為(-1,2),則與△A1B1C1關(guān)于于x軸對稱的△A2B2C2中B2的坐標(biāo)為(-1,-2),故選D.【點睛】此題主要考查了平移變換以及軸對稱變換,正確掌握變換規(guī)律是解題關(guān)鍵.11、D【解析】

根據(jù)同弧或等弧所對的圓周角相等可知∠BED=∠BAD,再結(jié)合圖形根據(jù)正切的定義進(jìn)行求解即可得.【詳解】∵∠DAB=∠DEB,∴tan∠DEB=tan∠DAB=,故選D.【點睛】本題考查了圓周角定理(同弧或等弧所對的圓周角相等)和正切的概念,正確得出相等的角是解題關(guān)鍵.12、D【解析】試題分析:∵代數(shù)式有意義,∴,解得x≥0且x≠1.故選D.考點:二次根式,分式有意義的條件.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】解:分別過點A、B作x軸的垂線,垂足分別為D、E.則AD∥BE,AD=2BE=,∴B、E分別是AC、DC的中點.∴△ADC∽△BEC,∵BE:AD=1:2,∴EC:CD=1:2,∴EC=DE=a,∴OC=3a,又∵A(a,),B(2a,),∴S△AOC=AD×CO=×3a×==1,解得:k=2.14、1.【解析】方程兩邊都乘以最簡公分母(x-2),把分式方程化為整式方程,再根據(jù)分式方程的增根就是使最簡公分母等于1的未知數(shù)的值求出x的值,然后代入進(jìn)行計算即可求出m的值:方程兩邊都乘以(x-2)得,2-x-m=2(x-2).∵分式方程有增根,∴x-2=1,解得x=2.∴2-2-m=2(2-2),解得m=1.15、到線段兩端點的距離相等的點在這條線段的垂直平分線上;對角線互相平分的四邊形為平行四邊形;有一個角為90°的平行四邊形為矩形【解析】

先利用作法判定OA=OC,OD=OB,則根據(jù)平行四邊形的判定方法判斷四邊形ABCD為平行四邊形,然后根據(jù)矩形的判定方法判斷四邊形ABCD為矩形.【詳解】解:由作法得EF垂直平分AC,則OA=OC,而OD=OB,所以四邊形ABCD為平行四邊形,而∠ABC=90°,所以四邊形ABCD為矩形.故答案為到線段兩段點的距離相等的點在這條線段的垂直平分線上;對角線互相平分的四邊形為平行四邊形;有一個內(nèi)角為90°的平行四邊形為矩形.【點睛】本題考查了作圖-復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進(jìn)行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.16、【解析】

分析題意,如圖所示,連接BF,由翻折變換可知,BF⊥AE,BE=EF,由點E是BC的中點可知BE=3,根據(jù)勾股定理即可求得AE;根據(jù)三角形的面積公式可求得BH,進(jìn)而可得到BF的長度;結(jié)合題意可知FE=BE=EC,進(jìn)而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點E為BC的中點,∴BE=EC=EF=3根據(jù)勾股定理有AE=AB+BE代入數(shù)據(jù)求得AE=5根據(jù)三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數(shù)據(jù)求得CF=故答案為【點睛】此題考查矩形的性質(zhì)和折疊問題,解題關(guān)鍵在于利用好折疊的性質(zhì)17、【解析】試題解析:所以故答案為18、80°.【解析】

由于直尺外形是矩形,根據(jù)矩形的性質(zhì)可知對邊平行,所以∠4=∠3,再根據(jù)外角的性質(zhì)即可求出結(jié)果.【詳解】解:如圖所示,依題意得:∠4=∠3,∵∠4=∠2+∠1=80°∴∠3=80°.故答案為80°.【點睛】本題考查了平行線的性質(zhì)和三角形外角的性質(zhì),掌握三角形外角的性質(zhì)是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D點坐標(biāo)為(1,2)或(4,﹣25).【解析】

(1)設(shè)交點式y(tǒng)=a(x+1)(x﹣),展開得到﹣a=3,然后求出a即可得到拋物線解析式;(2)作AE⊥BC于E,如圖1,先確定C(0,3),再分別計算出AC=,BC=,接著利用面積法計算出AE=,然后根據(jù)三角函數(shù)的定義求出∠ACE即可;(3)作BH⊥CD于H,如圖2,設(shè)H(m,n),證明Rt△BCH∽Rt△ACO,利用相似計算出BH=,CH=,再根據(jù)兩點間的距離公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接著通過解方程組得到H(,﹣)或(),然后求出直線CD的解析式,與二次函數(shù)聯(lián)立成方程組,解方程組即可.【詳解】(1)設(shè)拋物線解析式為y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴拋物線解析式為y=﹣2x2+x+3;(2)作AE⊥BC于E,如圖1,當(dāng)x=0時,y=﹣2x2+x+3=3,則C(0,3),而A(﹣1,0),B(,0),∴AC==,BC==AE?BC=OC?AB,∴AE==.在Rt△ACE中,sin∠ACE===,∴∠ACE=45°,即∠ACB=45°;(3)作BH⊥CD于H,如圖2,設(shè)H(m,n).∵tan∠DCB=tan∠ACO,∴∠HCB=∠ACO,∴Rt△BCH∽Rt△ACO,∴==,即==,∴BH=,CH=,∴(m﹣)2+n2=()2=,①m2+(n﹣3)2=()2=,②②﹣①得m=2n+,③,把③代入①得:(2n+﹣)2+n2=,整理得:80n2﹣48n﹣9=0,解得:n1=﹣,n2=.當(dāng)n=﹣時,m=2n+=,此時H(,﹣),易得直線CD的解析式為y=﹣7x+3,解方程組得:或,此時D點坐標(biāo)為(4,﹣25);當(dāng)n=時,m=2n+=,此時H(),易得直線CD的解析式為y=﹣x+3,解方程組得:或,此時D點坐標(biāo)為(1,2).綜上所述:D點坐標(biāo)為(1,2)或(4,﹣25).【點睛】本題是二次函數(shù)綜合題.熟練掌握二次函數(shù)圖象上點的坐標(biāo)特征、二次函數(shù)的性質(zhì)和相似三角形的判定的性質(zhì);會利用待定系數(shù)法求函數(shù)解析式,把求兩函數(shù)交點問題轉(zhuǎn)化為解方程組的問題;理解坐標(biāo)與圖形性質(zhì);會運(yùn)用分類討論的思想解決數(shù)學(xué)問題.20、(1)16、84°;(2)C;(3)該校4500名學(xué)生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有3000(人)【解析】

(1)根據(jù)百分比=所長人數(shù)÷總?cè)藬?shù),圓心角=百分比,計算即可;(2)根據(jù)中位數(shù)的定義計算即可;(3)用一半估計總體的思考問題即可;【詳解】(1)由題意總?cè)藬?shù)人,D組人數(shù)人;B組的圓心角為;(2)根據(jù)A組6人,B組14人,C組19人,D組16人,E組5人可知本次調(diào)查數(shù)據(jù)中的中位數(shù)落在C組;(3)該校4500名學(xué)生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有人.【點睛】本題主要考查了數(shù)據(jù)的統(tǒng)計,熟練掌握扇形圖圓心角度數(shù)求解方法,總體求解方法等相關(guān)內(nèi)容是解決本題的關(guān)鍵.21、(1)作圖見解析(2)∠BDC=72°【解析】解:(1)作圖如下:(2)∵在△ABC中,AB=AC,∠ABC=72°,∴∠A=180°﹣2∠ABC=180°﹣144°=36°.∵AD是∠ABC的平分線,∴∠ABD=∠ABC=×72°=36°.∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.(1)根據(jù)角平分線的作法利用直尺和圓規(guī)作出∠ABC的平分線:①以點B為圓心,任意長為半徑畫弧,分別交AB、BC于點E、F;②分別以點E、F為圓心,大于EF為半徑畫圓,兩圓相較于點G,連接BG交AC于點D.(2)先根據(jù)等腰三角形的性質(zhì)及三角形內(nèi)角和定理求出∠A的度數(shù),再由角平分線的性質(zhì)得出∠ABD的度數(shù),再根據(jù)三角形外角的性質(zhì)得出∠BDC的度數(shù)即可.22、(1)證明見解析;(2)AC=;【解析】

(1)由DE=BC,DE∥BC,推出四邊形BCDE是平行四邊形,再證明BE=DE即可解決問題;

(2)只要證明△ACD是直角三角形,∠ADC=60°,AD=2即可解決問題;【詳解】(1)證明:∵AD=2BC,E為AD的中點,∴DE=BC,∵AD∥BC,∴四邊形BCDE是平行四邊形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四邊形BCDE是菱形.(2)連接AC,如圖所示:∵∠ADB=30°,∠ABD=90°,∴AD=2AB,∵AD=2BC,∴AB=BC,∴∠BAC=∠BCA,∵AD∥BC,∴∠DAC=∠BCA,∴∠CAB=∠CAD=30°∴AB=BC=DC=1,AD=2BC=2,∵∠DAC=30°,∠ADC=60°,在Rt△ACD中,AC=.【點睛】考查菱形的判定和性質(zhì)、直角三角形斜邊中線的性質(zhì)、銳角三角函數(shù)等知識,解題的關(guān)鍵是熟練掌握菱形的判定方法.23、(1)見解析;(2)AB=4【解析】

(1)過點B作BF⊥CE于F,根據(jù)同角的余角相等求出∠BCF=∠D,再利用“角角邊”證明△BCF和△CDE全等,根據(jù)全等三角形對應(yīng)邊相等可得BF=CE,再證明四邊形AEFB是矩形,根據(jù)矩形的對邊相等可得AE=BF,從而得證;(2)由(1)可知:CF=DE,四邊形AEFB是矩形,從而求得AB=EF,利用銳角三角函數(shù)的定義得出DE和CE的長,即可求得AB的長.【詳解】(1)證明:過點B作BH⊥CE于H,如圖1.∵CE⊥AD,∴∠BHC=∠CED=90°,∠1+∠D=90°.∵∠BCD=90°,∴∠1+∠2=90°,∴∠2=∠D.又BC=CD∴△BHC≌△CED(AAS).∴BH=CE.∵BH⊥CE,CE⊥AD,∠A=90°,∴四邊形ABHE是矩形,∴AE=BH.∴AE=CE.(2)∵四邊形ABHE是矩形,∴AB=HE.∵在Rt△CED中,,設(shè)DE=x,CE=3x,∴.∴x=2.∴DE=2,CE=3.∵CH=DE=2.∴AB=HE=3-2=4.【點睛】本題考查了全等三角形的判定與性質(zhì),矩形的判定與性質(zhì),銳角三角函數(shù)的定義,難度中等,作輔助線構(gòu)造出全等三角形與矩形是解題的關(guān)鍵.24、,;存在,;或;當(dāng)時,.【解析】

(1)用待定系數(shù)法求出拋物線解析式;(2)先判斷出面積最大時,平移直線BC的直線和拋物線只有一個交點,從而求出點M坐標(biāo);(3)①先判斷出四邊形PBQC時菱形時,點P是線段BC的垂直平分線,利用該特殊性建立方程求解;②先求出四邊形PBCQ的面積與t的函數(shù)關(guān)系式,從而確定出它的最大值.【詳解】解:(1)將B(4,0)代入,解得,m=4,∴二次函數(shù)解析式為,令x=0,得y=4,∴C(0,4);(2)存在,理由:∵B(4,0),C(0,4),∴直線BC解析式為y=﹣x+4,當(dāng)直線BC向上平移b單位后和拋物線只有一個公共點時,△MBC面積最大,∴,∴,∴△=1﹣4b=0,∴b=4,∴,∴M(2,6);(3)①如圖,∵點P在拋物線上,∴設(shè)P(m,),當(dāng)四邊形PBQC是菱形時,點P在線段BC的垂直平分線上,∵B(4,0),C(0,4),∴線段BC的垂直平分線的解析式為y=x,∴m=,∴m=,∴P(,)或P(,);②如圖,設(shè)點P(t,),過點P作y軸的平行線l,過點C作l的垂線,∵點D在直線BC上,∴D(t,﹣t+4),∵PD=﹣(﹣t+4)=,BE+CF=4,∴S四邊形PBQC=2S△PDC=2(S△PCD+S△BD)=2(PD×CF+PD×BE)=4PD=∵0<t<4,∴當(dāng)t=2時,S四邊形PBQC最大=1.考點:二次函數(shù)綜合題;二次函數(shù)的最值;最值問題;分類討論;壓軸題.25、(1)作圖見解析;(2)7,7.5,2.8;(3)見解析.【解析】

(1)根據(jù)圖1找出8、9、10℃的天數(shù),然后補(bǔ)全統(tǒng)計圖即可;(2)根據(jù)眾數(shù)的定義,找出出現(xiàn)頻率最高的溫度;按照從低到高排列,求出第5、6兩個溫度的平均數(shù)即為中位數(shù);先求出平均數(shù),再根據(jù)方差的定義列式進(jìn)行計算即可得解;(3)求出7、8、9、10、11℃的天數(shù)在扇形統(tǒng)計圖中所占的度數(shù),然后作出扇形統(tǒng)計圖即可.【詳解】(1)由圖1可知,8℃有2天,9℃有0天,10℃有2天,補(bǔ)全統(tǒng)計圖如圖;(2)根據(jù)條形統(tǒng)計圖,7℃出現(xiàn)的頻率最高,為3天,所以,眾數(shù)是7;按照溫度從小到大的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論