版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省萊陽市中考數(shù)學(xué)檢測卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①4a+2b+c>0
;②y隨x的增大而增大;③方程ax2+bx+c=0兩根之和小于零;④一次函數(shù)y=ax+bc的圖象一定不過第二象限,其中正確的個數(shù)是(
)A.4個 B.3個 C.2個 D.1個2、把四張撲克牌所擺放的順序與位置如下,小楊同學(xué)選取其中一張撲克牌把他顛倒后在放回原來的位置,那么撲克牌的擺放順序與位置都沒變化,那么小楊同學(xué)所選的撲克牌是(
)A. B. C. D.3、二次函數(shù)y=x2+px+q,當0≤x≤1時,此函數(shù)最大值與最小值的差(
)A.與p、q的值都有關(guān) B.與p無關(guān),但與q有關(guān)C.與p、q的值都無關(guān) D.與p有關(guān),但與q無關(guān)4、已知學(xué)校航模組設(shè)計制作的火箭升空高度h(m)與飛行時間t(s)滿足函數(shù)表達式h=﹣t2+24t+1,則下列說法中正確的是(
)A.點火后1s和點火后3s的升空高度相同B.點火后24s火箭落于地面C.火箭升空的最大高度為145mD.點火后10s的升空高度為139m5、方程y2=-a有實數(shù)根的條件是(
)A.a(chǎn)≤0 B.a(chǎn)≥0 C.a(chǎn)>0 D.a(chǎn)為任何實數(shù)二、多選題(5小題,每小題3分,共計15分)1、下列命題正確的是(
)A.垂直于弦的直徑平分弦所對的兩條弧 B.弦的垂直平分線經(jīng)過圓心C.平分弦的直徑垂直于弦 D.平分弦所對的兩條弧的直線垂直于弦2、若為圓內(nèi)接四邊形,則下列哪個選項可能成立(
)A. B.C. D.3、如圖,AB是的直徑,C是上一點,E是△ABC的內(nèi)心,,延長BE交于點F,連接CF,AF.則下列結(jié)論正確的是(
)A. B.C.△AEF是等腰直角三角形 D.若,則4、如圖,AB是圓O的直徑,點G是圓上任意一點,點C是的中點,,垂足為點E,連接GA,GB,GC,GD,BC,GB與CD交于點F,則下列表述正確的是(
)A. B.C. D.5、已知拋物線(,,是常數(shù),)經(jīng)過點,,當時,與其對應(yīng)的函數(shù)值.下列結(jié)論正確的是(
)A. B.C. D.關(guān)于的方程有兩個不等的實數(shù)根第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、關(guān)于的方程有兩個不相等的實數(shù)根,則的取值范圍是________.2、已知關(guān)于的方程的一個根是,則____.3、如圖,△ABC內(nèi)接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于點D,若☉O的半徑為2,則CD的長為_____4、已知拋物線與x軸的一個交點為,則代數(shù)式的值為______.5、如圖,在甲,,,,以點為圓心,的長為半徑作圓,交于點,交于點,陰影部分的面積為__________(結(jié)果保留).四、解答題(6小題,每小題10分,共計60分)1、已知m是方程的一個根,試求的值.2、如圖,兩個圓都以點O為圓心,大圓的弦交小圓于兩點.求證:.3、已知的半徑是.弦.求圓心到的距離;弦兩端在圓上滑動,且保持,的中點在運動過程中構(gòu)成什么圖形,請說明理由.4、已知:如圖,△ABC中,AB=AC,AB>BC.求作:線段BD,使得點D在線段AC上,且∠CBD=∠BAC.作法:①以點A為圓心,AB長為半徑畫圓;②以點C為圓心,BC長為半徑畫弧,交⊙A于點P(不與點B重合);③連接BP交AC于點D.線段BD就是所求作的線段.(1)使用直尺和圓規(guī),依作法補全圖形(保留作圖痕跡);(2)完成下面的證明.證明:連接PC.∵AB=AC,∴點C在⊙A上.∵點P在⊙A上,∴∠CPB=∠BAC.()(填推理的依據(jù))∵BC=PC,∴∠CBD=.()(填推理的依據(jù))∴∠CBD=∠BAC.5、如圖①已知拋物線的圖象與軸交于、兩點(在的左側(cè)),與的正半軸交于點,連結(jié);二次函數(shù)的對稱軸與軸的交點.(1)拋物線的對稱軸與軸的交點坐標為,點的坐標為_____(2)若以為圓心的圓與軸和直線都相切,試求出拋物線的解析式:(3)在(2)的條件下,如圖②是的正半軸上一點,過點作軸的平行線,與直線交于點與拋物線交于點,連結(jié),將沿翻折,的對應(yīng)點為’,在圖②中探究:是否存在點,使得’恰好落在軸上?若存在,請求出的坐標:若不存在,請說明理由.6、安順市某商貿(mào)公司以每千克40元的價格購進一種干果,計劃以每千克60元的價格銷售,為了讓顧客得到更大的實惠,現(xiàn)決定降價銷售,已知這種干果銷售量(千克)與每千克降價(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示:(1)求與之間的函數(shù)關(guān)系式;(2)商貿(mào)公司要想獲利2090元,則這種干果每千克應(yīng)降價多少元?-參考答案-一、單選題1、D【解析】【分析】根據(jù)函數(shù)的圖象可知x=2時,函數(shù)值的正負性;并且可知與x軸有兩個交點,即對應(yīng)方程有兩個實數(shù)根;函數(shù)的增減性需要找到其對稱軸才知具體情況;由函數(shù)的圖象還可知b、c的正負性,一次函數(shù)y=ax+bc所經(jīng)過的象限進而可知正確選項.【詳解】∵當x=2時,y=4a+2b+c,對應(yīng)的y值為正,即4a+2b+c>0,故①正確;∵因為拋物線開口向上,在對稱軸左側(cè),y隨x的增大而減??;在對稱軸右側(cè),y隨x的增大而增大,故②錯誤;∵由二次函數(shù)y=ax2+bx+c(a≠0)的圖象可知:函數(shù)圖象與x軸有兩個不同的交點,即對應(yīng)方程有兩個不相等的實數(shù)根,且正根的絕對值較大,∴方程ax2+bx+c=0兩根之和大于零,故③錯誤;∵由圖象開口向上,知a>0,與y軸交于負半軸,知c<0,由對稱軸,知b<0,∴bc>0,∴一次函數(shù)y=ax+bc的圖象一定經(jīng)過第二象限,故④錯誤;綜上,正確的個數(shù)為1個,故選:D.【考點】本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系以及一次函數(shù)的圖象,利用了數(shù)形結(jié)合的思想,此類題涉及的知識面比較廣,能正確觀察圖象是解本題的關(guān)鍵.2、D【解析】【分析】根據(jù)題意,圖形是中心對稱圖形即可得出答案.【詳解】由題意可知,圖形是中心對稱圖形,可得答案為D,故選:D.【考點】本題考查了圖形的中心對稱的性質(zhì),掌握中心圖形的性質(zhì)是解題的關(guān)鍵.3、D【解析】【分析】分別求出函數(shù)解析式的最小值、當0≤x≤1時端點值即:當x=0和x=1時的函數(shù)值.由二次函數(shù)性質(zhì)可知此函數(shù)最大值與最小值必是其中的兩個,通過比較可知差值與p有關(guān),但與q無關(guān)【詳解】解:依題意得:當時,端點值,當時,端點值,當時,函數(shù)最小值,由二次函數(shù)的最值性質(zhì)可知,當0≤x≤1時,此函數(shù)最大值和最小值是、、其中的兩個,所以最大值與最小值的差可能是或或,故其差只含p不含q,故與p有關(guān),但與q無關(guān)故選:.【考點】本題考查了二次函數(shù)的最值問題,掌握二次函數(shù)的性質(zhì)、靈活運用配方法是解題的關(guān)鍵.4、C【解析】【分析】分別求出t=1、3、24、10時h的值可判斷A、B、D三個選項,將解析式配方成頂點式可判斷C選項.【詳解】解:A、當t=1時,h=24;當t=3時,h=64;所以點火后1s和點火后3s的升空高度不相同,此選項錯誤;B、當t=24時,h=1≠0,所以點火后24s火箭離地面的高度為1m,此選項錯誤;C、由h=﹣t2+24t+1=﹣(t-12)2+145知火箭升空的最大高度為145m,此選項正確;D、當t=10時,h=141m,此選項錯誤;故選:C.【考點】本題主要考查二次函數(shù)的應(yīng)用,解題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì).5、A【解析】【分析】根據(jù)平方的非負性可以得出﹣a≥0,再進行整理即可.【詳解】解:∵方程y2=﹣a有實數(shù)根,∴﹣a≥0(平方具有非負性),∴a≤0;故選:A.【考點】此題考查了直接開平方法解一元二次方程,關(guān)鍵是根據(jù)已知條件得出﹣a≥0.二、多選題1、ABD【解析】【分析】根據(jù)垂徑定理及其推論進行判斷即可.【詳解】A、垂直于弦的直徑平分弦所對的兩條弧,正確;B、弦的垂直平分線經(jīng)過圓心,正確;C、平分弦(不是直徑)的直徑垂直于弦,故錯誤;D、平分弦所對的兩條弧的直線垂直于弦,正確;故選ABD.【考點】本題考查了垂徑定理:熟練掌握垂徑定理及其推論是解決問題的關(guān)鍵.2、BD【解析】【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠A+∠C=∠B+∠D=180°,再逐個判斷即可.【詳解】解:∵四邊形ABCD是圓內(nèi)接四邊形,∴∠A+∠C=180°,∠B+∠D=180°,∴∠A+∠C=∠B+∠D,A.∵,∴∠A+∠C≠∠B+∠D,故本選項不符合題意;B.∵,∴∠A+∠C=∠B+∠D,故本選項符合題意;C.∵,∴∠A+∠C≠∠B+∠D,故本選項不符合題意;D.∵,∴∠A+∠C=∠B+∠D,故本選項符合題意;故選:BD.【考點】本題考查了圓周角定理和圓內(nèi)接四邊形的性質(zhì),注意:圓內(nèi)接四邊形的對角互補.3、BCD【解析】【分析】由圓周角定理可得∠ACB=∠AFB=90°,再由E是△ABC的內(nèi)心可得∠EAB+∠EBA=45°,從而得出∠AEF=45°,進一步得到△ABC是等腰直角三角形,再由垂徑定理得EF=EB,從而可得AE=EB,由中位線定理得AE=2OE=2,最后求出.【詳解】∵AB為直徑,,∴∠ACB=∠AFB=90°,∴∠CAB+∠CBA=180°,∵E是△ABC的內(nèi)心,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,故選項B正確,∴∠AEF=∠EAB+∠EBA=45°,∴△AEF是等腰直角三角形,故選項C正確,∴AF=EF,AE=EF,∵,∴EF=EB,∴AE=EB,故選項A錯誤,∵OA=OB,EF=EB,∴AE=2OE=2,∴EF=BE=2,∴,故選項D正確,故選:BCD【考點】本題主要考查了垂徑定理,圓周角定理,中位線定理,三角形內(nèi)心性質(zhì),等腰直角三角形,等知識,證明△ABC是等腰直角三角形是解題的關(guān)鍵.4、ACD【解析】【分析】根據(jù)垂徑定理和圓周角定理可以判斷A,根據(jù)圓周角定理可以判斷B,根據(jù)圓周角定理、垂徑定理以及等角對等邊,即可判斷C,根據(jù)圓周角定理、垂徑定理以及平行線的判定,即可判斷D.【詳解】解:∵AB是圓O的直徑,,∴,∴,故A正確;∵AB是圓O的直徑,,∴,∵,即,也沒有其他條件可以證得和的另外一組內(nèi)角對應(yīng)相等,∴不能證得,故B不正確;∵點C是的中點,∴,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故C正確;∵點C是的中點,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故D正確.故選ACD.【考點】本題主要考查了垂徑定理、圓周角定理、等腰三角形的判定以及平行線的判定.5、BCD【解析】【分析】根據(jù)函數(shù)與點的關(guān)系,一元二次方程根的判別式,不等式的性質(zhì),逐一計算判斷即可.【詳解】∵拋物線(是常數(shù),)經(jīng)過點(-1,-1),,當時,與其對應(yīng)的函數(shù)值,∴c=1>0,a-b+c=-1,4a-2b+c>1,∴a-b=-2,2a-b>0,∴2a-a-2>0,∴a>2>0,∴b=a+2>0,∴abc>0,故A錯誤;∵b=a+2,a>2,c=1,,故B正確;∴a+b+c=a+a+2+1=2a+3,∵a>2,∴2a>4,∴2a+3>4+3>7,即,故C正確;∵,∴△==>0,∴有兩個不等的實數(shù)根,故D正確.故選:BCD.【考點】本題考查了二次函數(shù)的性質(zhì),一元二次方程根的判別式,不等式的基本性質(zhì),熟練掌握二次函數(shù)的性質(zhì),靈活使用根的判別式,準確掌握不等式的基本性質(zhì)是解題的關(guān)鍵.三、填空題1、且【解析】【分析】若一元二次方程有兩個不相等的實數(shù)根,則△=b2-4ac>0,建立關(guān)于k的不等式,求得k的取值范圍,還要使二次項系數(shù)不為0.【詳解】∵方程有兩個不相等的實數(shù)根,∴解得:,又二次項系數(shù)故答案為且【考點】考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.2、【解析】【分析】根據(jù)一元二次方程解的定義將x=1代入即可求出a的值.【詳解】解:∵關(guān)于的方程的一個根是∴解得:a=-1故答案為:.【考點】此題考查的是根據(jù)一元二次方程的解,求參數(shù)的值,掌握一元二次方程解的定義是解決此題的關(guān)鍵.3、【解析】【分析】連接OA,OC,根據(jù)∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函數(shù)即可求得CD的長.【詳解】解:連接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案為.【考點】本題考查了圓周角定理以及銳角三角函數(shù),根據(jù)題意作出常用輔助線是解題關(guān)鍵.4、2019【解析】【分析】先將點(m,0)代入函數(shù)解析式,然后求代數(shù)式的值即可得出結(jié)果.【詳解】解:將(m,0)代入函數(shù)解析式得,m2-m-1=0,∴m2-m=1,∴-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019.故答案為:2019.【考點】本題考查了二次函數(shù)圖象上點的坐標特征及求代數(shù)式的值,解題的關(guān)鍵是將點(m,0)代入函數(shù)解析式得到有關(guān)m的代數(shù)式的值.5、【解析】【分析】連接BE,根據(jù)正切的定義求出∠A,根據(jù)扇形面積公式、三角形的面積公式計算即可.【詳解】解:連接BE,在Rt△ABC中,∠ABC=90°,∴tanA=,∴∠A=60°,∵BA=BE,∴△ABE為等邊三角形,∴∠ABE=30°,∴∠EBC=30°,∴陰影部分的面積=×2×2×+=故答案為.【考點】本題考查的是扇形面積計算、等邊三角形的判定和性質(zhì),掌握扇形面積公式是解題的關(guān)鍵.四、解答題1、2015【解析】【分析】先根據(jù)一元二次方程的解的定義得到,變形有或,再利用整體思想進行計算.【詳解】解:∵m是方程的一個根,代入即得.∴或.∴.【考點】本題考查了一元二次方程的解的定義,解題的關(guān)鍵是適當選擇整體代入法,使得解答變得簡單.2、見解析【解析】【分析】過點O作OP⊥AB,由等腰三角形的性質(zhì)可知AP=BP,再由垂徑定理可知CP=DP,故可得出結(jié)論.【詳解】證明:如圖所示,過點O作OP⊥AB,垂足為點P,由垂徑定理可得PA=PB,PC=PD,PA-PC=PB-PD,AC=BD.【考點】本題考查的是垂徑定理,根據(jù)題意作出輔助線,利用垂徑定理求解是解答此題的關(guān)鍵.3、(1)3;(2)在運動過程中,點運動的軌跡是以為圓心,為半徑的圓【解析】【分析】(1)利用垂徑定理,然后根據(jù)勾股定理即可求得弦心距OD的長;(2)根據(jù)圓的定義即可確定.【詳解】解:連接,作于.就是圓心到弦的距離.在中,∵∴是弦的中點在中,,,圓心到弦的距離為.由知:是弦的中點中點在運動過程中始終保持∴據(jù)圓的定義,在運動過程中,點運動的軌跡是以為圓心,為半徑的圓.【考點】考查垂徑定理,作出輔助線,構(gòu)造直角三角形是解題的關(guān)鍵.4、(1)見解析;(2)圓周角定理;,圓周角定理的推論【解析】【分析】(1)利用幾何語言畫出對應(yīng)的幾何圖形;(2)先根據(jù)圓周角定理得到,再利用等腰三角形的性質(zhì)得到,從而得到.【詳解】解:(1)如圖,為所作;(2)證明:連接,如圖,,點在上.點在上,(圓周角定理),,(圓周角定理的推論).故答案為:圓周角定理;;圓周角定理的推論.【考點】本題考查了作圖復(fù)雜作圖、也考查了圓周角定理,解題的關(guān)鍵是掌握復(fù)雜作圖的五種基本作圖的基本方法,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.5、(1);(2);(3)【解析】【分析】(1)由拋物線的對稱軸為直線,即可求得點E的坐標;在y=ax2﹣3ax﹣4a(a<0)令y=0可得關(guān)于x的方程ax2﹣3ax﹣4a=0,解方程即可求得點A的坐標;(2)如圖1,設(shè)⊙E與直線BC相切于點D,連接DE,則DE⊥BC,結(jié)合(1)可得DE=OE=,EB=,OC=-4a,在Rt△BDE中由勾股定理可得BD=2,這樣由tan∠OBC=即可列出關(guān)于a的方程,解方程求得a的值即可得到拋物線的解析式;(3)由折疊的性質(zhì)和MN∥y軸可得∠MCN=∠M′CN=∠MNC,由此可得CM=MN,由點B的坐標為(4,0),點C的坐標為(0,3)可得線段BC=5,直線BC的解析式為y=﹣x+3,由此即可得到M、N的坐標分別為(m,﹣m+3)、(m,﹣m2+m+3),作MF⊥OC于F,這樣由sin∠BCO=即可解得CM=m,然后分點N在直線BC的上方和下方兩種情況用含m的代數(shù)式表達出MN的長度,結(jié)合MN=CM即可列出關(guān)于m的方程,解方程即可求得對應(yīng)的m的值,從而得到對應(yīng)的點Q的坐標.【詳解】解:(1)∵對稱軸x=,∴點E坐標(,0),令y=0,則有ax2﹣3ax﹣4a=0,∴x=﹣1或4,∴點A坐標(﹣1,0).故答案分別為(,0),(﹣1,0).(2)如圖①中,設(shè)⊙E與直線BC相切于點D,連接DE,則DE⊥BC,∵DE=OE=,EB=,OC=﹣4a,∴DB=,∵tan∠OBC=,∴,解得a=,∴拋物
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東省惠州市惠城區(qū)2025-2026學(xué)年度第一學(xué)期期末八年級歷史試題(含答案)
- 2025年曲阜遠東職業(yè)技術(shù)學(xué)院馬克思主義基本原理概論期末考試模擬題含答案解析(必刷)
- 2026年克拉瑪依職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)考試模擬測試卷帶答案解析
- 2024年龍巖學(xué)院馬克思主義基本原理概論期末考試題附答案解析(奪冠)
- 2024年阜南縣幼兒園教師招教考試備考題庫帶答案解析
- 2026年常州機電職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性考試題庫附答案解析
- 2024年邵陽通航職業(yè)技術(shù)學(xué)院馬克思主義基本原理概論期末考試題帶答案解析(必刷)
- 江蘇2025年江蘇省文物考古研究院招聘9人筆試歷年參考題庫附帶答案詳解
- 2026年2026江蘇南京市衛(wèi)生健康委員會南京市機關(guān)事務(wù)管理局部分事業(yè)單位招聘衛(wèi)技人員筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2025年四川宜賓市屏山縣衛(wèi)生健康局下屬事業(yè)單位屏山縣生育服務(wù)和愛國衛(wèi)生事務(wù)中心考調(diào)事業(yè)單位人員2人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- DB44∕T 2328-2021 慢性腎臟病中醫(yī)健康管理技術(shù)規(guī)范
- 農(nóng)村水利技術(shù)術(shù)語(SL 56-2013)中文索引
- 中考語文文言文150個實詞及虛詞默寫表(含答案)
- 廣西小額貸管理辦法
- 海南省醫(yī)療衛(wèi)生機構(gòu)數(shù)量基本情況數(shù)據(jù)分析報告2025版
- 電影院消防安全制度范本
- 酒店工程維修合同協(xié)議書
- 2025年版?zhèn)€人與公司居間合同范例
- 電子商務(wù)平臺項目運營合作協(xié)議書范本
- 動設(shè)備監(jiān)測課件 振動狀態(tài)監(jiān)測技術(shù)基礎(chǔ)知識
- 專題15平面解析幾何(選擇填空題)(第一部分)(解析版) - 大數(shù)據(jù)之十年高考真題(2014-2025)與優(yōu) 質(zhì)模擬題(新高考卷與全國理科卷)
評論
0/150
提交評論