版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省恩施市中考數(shù)學真題分類(勾股定理)匯編必考點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,△OAB的頂點O(0,0),頂點A,B分別在第一、四象限,且AB⊥x軸,若AB=6,OA=OB=5,則點A的坐標是(
)A. B. C. D.2、如圖是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設(shè)直角三角形的兩直角邊分別是a、b,且,大正方形的面積是9,則小正方形的面積是(
)A.3 B.4 C.5 D.63、在△ABC中,∠A,∠B,∠C的對邊分別記為a,b,c,下列結(jié)論中不正確的是(
)A.如果a2=b2?c2,那么△ABC是直角三角形且∠A=90°B.如果∠A:∠B:∠C=1:2:3,那么△ABC是直角三角形C.如果,那么△ABC是直角三角形D.如果,那么△ABC是直角三角形4、如圖,所有陰影四邊形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面積依次為2,4,3,則正方形D的面積為()A.9 B.8 C.27 D.455、如圖,長方形中,,,將此長方形折疊,使點與點重合,折痕為,則的長為(
)A.12 B.8 C.10 D.136、如圖,以Rt△ABC的兩直角邊為邊向外作正方形,其面積分別為S1,S2,若S1=8cm2,S2=17cm2,則斜邊AB的長是(
)A.3cm B.6cm C.4cm D.5cm7、如圖所示,圓柱的高AB=3,底面直徑BC=3,現(xiàn)在有一只螞蟻想要從A處沿圓柱表面爬到對角C處捕食,則它爬行的最短距離是()A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖所示,數(shù)軸上點A所表示的數(shù)為_______.2、如圖,一個高,底面周長的圓柱形水塔,現(xiàn)制造一個螺旋形登梯,為了減小坡度,要求登梯繞塔環(huán)繞一周半到達頂端,問登梯至少為___________長.3、如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點D在AB上,AD=AC,AF⊥CD交CD于點E,交CB于點F,則CF的長是________________.4、如圖,矩形ABCD中,AD=6,AB=8.點E為邊DC上的一個動點,△AD'E與△ADE關(guān)于直線AE對稱,當△CD'E為直角三角形時,DE的長為__.5、如圖,點在正方形的邊上,若,,那么正方形的面積為_.6、如圖,臺風過后,某希望小學的旗桿在離地某處斷裂,且旗桿頂部落在離旗桿底部8m處,已知旗桿原長16m,你能求出旗桿在離底部________m位置斷裂.7、《九章算術(shù)》是我國古代數(shù)學名著,書中有下列問題:“今有垣高一丈,倚木于垣,上與垣齊.引木卻行一尺,其木至地,問木長幾何?”其意思為:今有墻高1丈,倚木桿于墻,使木之上端與墻平齊,牽引木桿下端退行1尺,則木桿(從墻上)滑落至地上.問木桿是多長?(1丈=10尺)設(shè)木桿長為x尺根據(jù)題意,可列方程為______.8、如圖,在網(wǎng)格中,每個小正方形的邊長均為1.點A、B,C都在格點上,若BD是△ABC的高,則BD的長為__________.三、解答題(7小題,每小題10分,共計70分)1、如圖,一艘船由A港沿北偏東60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.(1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);(2)確定C港在A港的什么方向.2、如圖,點B,F(xiàn),C,E在同一條直線上,,且.(1)求證:.(2)若,,,求BE的長.3、如圖,在△ABC中,∠C=90°,M是BC的中點,MD⊥AB于D,求證:.4、如圖是“弦圖”的示意圖,“弦圖”最早是由三國時期的數(shù)學家趙爽在為《周髀算經(jīng)》作注時給出的,它標志著中國古代的數(shù)學成就.它由4個全等的直角三角形與一個小正方形組成,恰好拼成一個大正方形,每個直角三角形的兩條直角邊分別為a、b,斜邊為c.請你運用此圖形證明勾股定理:a2+b2=c2.5、《算法統(tǒng)宗》是中國古代數(shù)學名著,作者是我國明代數(shù)學家程大位.在《算法統(tǒng)宗》中有一道“蕩秋千”的問題:“平地秋千未起,踏板一尺離地.送行二步與人齊,五尺人高曾記.仕女佳人爭蹴,終朝笑語歡嬉.良工高士素好奇,算出索長有幾.”(注:1步=5尺)譯文:“有一架秋千,當它靜止時,踏板離地1尺,將它往前推送10尺(水平距離)時,秋千的踏板就和人一樣高,這個人的身高為5尺,秋千的繩索始終拉得很直,問繩索有多長.”6、如圖,某海岸線MN的方向為北偏東75°,甲,乙兩船分別向海島C運送物資,甲船從港口A處沿北偏東45°方向航行,乙船從港口B處沿北偏東30°方向航行,已知港口B到海島C的距離為30海里,求港口A到海島C的距離.7、如圖,在筆直的鐵路上A、B兩點相距25km,C、D為兩村莊,,,于A,于B,現(xiàn)要在AB上建一個中轉(zhuǎn)站E,使得C、D兩村到E站的距離相等,求E應建在距A多遠處?-參考答案-一、單選題1、D【解析】【分析】利用HL證明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【詳解】解:∵AB⊥x軸,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=AB=3,∵OA=5,∴OC=4,∴點A的坐標是(4,3),故選:D.【考點】本題考查了坐標與圖形,全等三角形的判定和性質(zhì),勾股定理,解題的關(guān)鍵是靈活運用所學知識解決問題.2、A【解析】【分析】觀察圖形可知,小正方形的面積=大正方形的面積?4個直角三角形的面積,利用已知(a+b)2=15,大正方形的面積為9,可以得出直角三角形的面積,進而求出答案.【詳解】解:∵(a+b)2=15,∴a2+2ab+b2=15,∵大正方形的面積為:a2+b2=9,∴2ab=15?9=6,即ab=3,∴直角三角形的面積為:,∴小正方形的面積為:,故選:A.【考點】此題主要考查了完全平方公式及勾股定理的應用,熟練應用完全平方公式及勾股定理是解題關(guān)鍵.3、A【解析】【分析】根據(jù)直角三角形的判定和勾股定理的逆定理解答即可.【詳解】解:A、如果
a2=b2-c2,即b2=a2+c2,那么△ABC
是直角三角形且∠B=90°,選項錯誤,符合題意;B、如果∠A:∠B:∠C=1:2:3,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC
是直角三角形,選項正確,不符合題意;C、如果
a2:b2:c2=9:16:25,滿足a2+b2=c2,那么△ABC
是直角三角形,選項正確,不符合題意;D、如果∠A-∠B=∠C,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC
是直角三角形,選項正確,不符合題意;故選:A.【考點】本題考查的是直角三角形的判定和勾股定理的逆定理的應用,如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.4、A【解析】【分析】設(shè)正方形D的面積為x,根據(jù)圖形得出方程2+4=x-3,求出即可.【詳解】∵正方形A、B、C的面積依次為2、4、3,∴根據(jù)圖形得:2+4=x?3.解得:x=9.故選A.【考點】本題考查了勾股定理,根據(jù)圖形推出四個正方形的關(guān)系是解決問題的關(guān)鍵.5、D【解析】【分析】設(shè)BE為x,則AE為25-x,在由勾股定理有,即可求得BE=13.【詳解】設(shè)BE為x,則DE為x,AE為25-x∵四邊形為長方形∴∠EAB=90°∴在中由勾股定理有即化簡得解得故選:D.【考點】本題考查了折疊問題求折痕或其他邊長,主要可根據(jù)折疊前后兩圖形的全等條件,把某個直角三角形的三邊都用同一未知量表示出來,并根據(jù)勾股定理建立方程,進而可以求解.6、D【解析】【分析】根據(jù)正方形的面積可以得到BC2=8,AC2=17,然后根據(jù)勾股定理即可得到AB2,從而可以求得AB的值.【詳解】解:S1=8cm2,S2=17cm2,∴BC2=8,AC2=17,∵∠ACB=90°,∴AB2=BC2+AC2,即AB2=8+17=25,∴AB=5cm,故選:D.【考點】本題考查正方形的面積、勾股定理,解答本題的關(guān)鍵是明確正方形的面積是邊長的平方.7、C【解析】【分析】要求最短路徑,首先要把圓柱的側(cè)面展開,利用兩點之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開,展開圖如圖所示,點A、C之間的最短距離為線段AC的長.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD為底面半圓弧長,AD=π,∴AC=,故選C.【考點】本題考查了平面展開-最短路徑問題,解題的關(guān)鍵是會將圓柱的側(cè)面展開,并利用勾股定理解答.二、填空題1、【解析】【分析】根據(jù)數(shù)軸上點的特點和相關(guān)線段的長,結(jié)合勾股定理求出斜邊長,即可求出-1和A之間的線段的長,即可知A所表示的數(shù).【詳解】圖中直角三角形的兩直角邊為1,2,所以斜邊長為,那么-1和A之間的距離為,那么數(shù)軸上點A所表示的數(shù)為:.故答案為:.【考點】本題考查實數(shù)與數(shù)軸之間的對應關(guān)系以及勾股定理,利用勾股定理求出直角三角形的斜邊的長是解答本題的關(guān)鍵.2、20m.【解析】【分析】試題分析:要求登梯的長,需將圓柱的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果,在求線段長時,借助于勾股定理.【詳解】將圓柱表面按一周半開展開呈長方形,
∵圓柱高16m,底面周長8m,設(shè)螺旋形登梯長為xm,∴x2=(1×8+4)2+162=400,∴登梯至少=20m故答案為:20m【考點】本題考查圓柱形側(cè)面展開圖新問題,涉及勾股定理,掌握按要求將圓柱側(cè)面展開圖形的方法,會利用圓周,高與對角線組成直角三角形,用勾股定理解決問題是關(guān)鍵.3、1.5【解析】【分析】連接DF,由勾股定理求出AB=5,由等腰三角形的性質(zhì)得出∠CAF=∠DAF,由SAS證明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,設(shè)CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【詳解】連接DF,如圖所示:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=5,∵AD=AC=3,AF⊥CD,∴∠CAF=∠DAF,BD=AB-AD=2,在△ADF和△ACF中,∴△ADF≌△ACF(SAS),∴∠ADF=∠ACF=90°,CF=DF,∴∠BDF=90°,設(shè)CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4-x)2,解得:x=1.5;∴CF=1.5;故答案為1.5.【考點】本題考查了勾股定理、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì),證明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解決問題的關(guān)鍵.4、3或6【解析】【分析】分兩種情況分別求解,(1)當∠CED′=90°時,如圖(1),根據(jù)軸對稱的性質(zhì)得∠AED=∠AED′=45′,得DE=AD=6;(2)當∠ED′A=90°時,如圖(2),根據(jù)軸對稱的性質(zhì)得∠AD′E=∠D,AD′=AD,DE=D′E,得A、D′、C在同一直線上,根據(jù)勾股定理得AC=10,設(shè)DE=D′E=x,則EC=CD?DE=8?x,根據(jù)勾股定理得,D′E2+D′C2=EC2,代入相關(guān)的值,計算即可.【詳解】解:當∠CED′=90°時,如圖(1),∵∠CED′=90°,根據(jù)軸對稱的性質(zhì)得∠AED=∠AED′=×90°=45°,∵∠D=90°,∴△ADE是等腰直角三角形,∴DE=AD=6;(2)當∠ED′A=90°時,如圖(2),根據(jù)軸對稱的性質(zhì)得∠AD′E=∠D=90°,AD′=AD,DE=D′E,△CD′E為直角三角形,即∠CD′E=90°,∴∠AD′E+∠CD′E=180°,∴A、D′、C在同一直線上,根據(jù)勾股定理得,∴CD′=10?6=4,設(shè)DE=D′E=x,則EC=CD?DE=8?x,在Rt△D′EC中,D′E2+D′C2=EC2,即x2+16=(8?x)2,解得x=3,即DE=3;綜上所述:DE的長為3或6;故答案為:3或6.【考點】本題考查了矩形的性質(zhì)、勾股定理、軸對稱的性質(zhì),熟練掌握矩形的性質(zhì)、勾股定理、軸對稱的性質(zhì)的綜合應用,分情況討論,作出圖形是解題關(guān)鍵.5、.【解析】【分析】根據(jù)勾股定理求出BC,根據(jù)正方形的面積公式計算即可.【詳解】解:由勾股定理得,,正方形的面積,故答案為.【考點】本題考查了勾股定理,如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.6、6【解析】【分析】設(shè),則,在中,利用勾股定理列方程,即可求解.【詳解】解:如圖,由題意知,,,設(shè),則,在中,,即,解得,因此旗桿在離底部6m位置斷裂.故答案為:6.【考點】本題考查勾股定理的實際應用,讀懂題意,根據(jù)勾股定理列出方程是解題的關(guān)鍵.7、102+(x-1)2=x2【解析】【分析】當木桿的上端與墻頭平齊時,木桿與墻、地面構(gòu)成直角三角形,設(shè)木桿長為x尺,則木桿底端離墻有(x-1)尺,根據(jù)勾股定理可列出方程.【詳解】解:如圖,設(shè)木桿AB長為x尺,則木桿底端B離墻的距離即BC的長有(x-1)尺,在Rt△ABC中,∵AC2+BC2=AB2,∴102+(x-1)2=x2,故答案為:102+(x-1)2=x2.【考點】此題考查了勾股定理的應用,解題的關(guān)鍵是由實際問題抽象出直角三角形,從而運用勾股定理解題.8、##【解析】【分析】根據(jù)勾股定理計算AC的長,利用面積差可得三角形ABC的面積,由三角形的面積公式即可得到結(jié)論.【詳解】】解:由勾股定理得:AC=,∵S△ABC=3×4-×1×2-×3×2-×2×4=4,∴AC?BD=4,∴×2BD=4,∴BD=,故答案為:.【考點】本題考查了勾股定理,三角形的面積的計算,掌握勾股定理是解題的關(guān)鍵.三、解答題1、(1)A、C兩地之間的距離為14.1km;(2)C港在A港北偏東15°的方向上.【解析】【分析】(1)根據(jù)方位角的定義可得出∠ABC=90°,再根據(jù)勾股定理可求得AC的長為14.1.(2)由(1)可知△ABC為等腰直角三角形,從而得出∠BAC=45°,求出∠CAM=15°,所而確定C港在A港的什么方向.【詳解】(1)由題意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴AC==≈14.1.答:A、C兩地之間的距離為14.1km.(2)由(1)知,△ABC為等腰直角三角形,∴∠BAC=45°,∴∠CAM=15°,∴C港在A港北偏東15°的方向上.【考點】本題考查了方位角的概念及勾股定理及其逆定理,正確理解方位角是解題的關(guān)鍵.2、(1)見解析(2)6【解析】【分析】(1)根據(jù)已知條件利用證明即可;(2)根據(jù)勾股定理求解即可.(1)證明:∵.∴,∵,∴,又∵,∴(2)解:∵,,且,∴由勾股定理得,∴,∴【考點】本題考查了全等三角形的性質(zhì)與判定,勾股定理解直角三角形,掌握以上知識是解題的關(guān)鍵.3、見解析【解析】【分析】連接AM得到三個直角三角形,運用勾股定理分別表示出AD2、AM2、BM2進行代換就可以最后得到所要證明的結(jié)果.【詳解】證明:連接MA,∵MD⊥AB,∴AD2=AM2-MD2,BM2=BD2+MD2,∵∠C=90°,∴AM2=AC2+CM2∵M為BC中點,∴BM=MC.∴AD2=AC2+BD2【考點】本題考查了勾股定理,三次運用勾股定理進行代換計算即可求出結(jié)果,另外準確作出輔助線也是正確解出的重要因素.4、見解析【解析】【分析】根據(jù)大正方形的面積=小正方形的面積+4個直角三角形的面積證明即可【詳解】解:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026住房和城鄉(xiāng)建設(shè)部直屬事業(yè)單位第一批招聘20人參考考試題庫及答案解析
- 2026福建莆田市司法局招聘市學園公證處編外公證員及公證員助理4人備考考試題庫及答案解析
- 政府采購現(xiàn)場管理制度范本(3篇)
- 2026四川巴中市公安局招聘警務(wù)輔助人員47人備考考試題庫及答案解析
- 談話活動創(chuàng)意方案策劃(3篇)
- 2026年紹興高新技術(shù)產(chǎn)業(yè)開發(fā)區(qū)控股集團有限公司專業(yè)人才公開招聘2人備考考試題庫及答案解析
- 信訪基層版平臺管理制度(3篇)
- 2026聯(lián)勤保障部隊第九八〇醫(yī)院(白求恩國際和平醫(yī)院)公開招聘30人(第一季)參考考試題庫及答案解析
- 壽司自主活動方案策劃(3篇)
- 2026山東事業(yè)單位統(tǒng)考省文物考古研究院招聘初級綜合類崗位2人參考考試題庫及答案解析
- DBJ04T 432-2022 建設(shè)工程全過程造價咨詢標準
- 社區(qū)警務(wù)專業(yè)能力等級評定考試大綱練習試題
- 球囊導管擴張技術(shù)課件
- 六年級上冊英語書詞匯表
- 《微電子封裝技術(shù)》課程教學大綱
- 城市軌道交通服務(wù)員(城市軌道交通站務(wù)員)考核要素細目表與考核內(nèi)容結(jié)構(gòu)表
- JBT 12530.4-2015 塑料焊縫無損檢測方法 第4部分:超聲檢測
- 江西省吉安市初中生物七年級期末下冊高分預測題詳細答案和解析
- 《中國心力衰竭診斷和治療指南2024》解讀(總)
- DZ∕T 0033-2020 固體礦產(chǎn)地質(zhì)勘查報告編寫規(guī)范(正式版)
- 瀝青拌合站方案
評論
0/150
提交評論