版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南湘潭市電機子弟中學7年級數(shù)學下冊第五章生活中的軸對稱章節(jié)訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,下列圖形中,軸對稱圖形的個數(shù)是()A.1 B.2 C.3 D.42、如圖,點D是∠FAB內的定點且AD=2,若點C、E分別是射線AF、AB上異于點A的動點,且△CDE周長的最小值是2時,∠FAB的度數(shù)是()A.30° B.45° C.60° D.90°3、下列圖形中,是軸對稱圖形的是()A. B.C. D.4、中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點生活或配合其他民俗活動的民間藝術.2006年5月20日,剪紙藝術遺產經國務院批準列入第一批國家級非物質文化遺產名錄.2009年9月28日至10月2日舉行的聯(lián)合國教科文組織保護非物質文化遺產政府間委員會第四次會議上,中國申報的中國剪紙項目入選“人類非物質文化遺產代表作名錄”.下列四個剪紙圖案是軸對稱圖形的為()A. B. C. D.5、如圖,長方形紙片ABCD,點E、F分別在邊AB、CD上,連接EF.將∠BEF對折,點B落在直線EF上的點B'處,得折痕EM;將∠AEF對折,點A落在直線EF上的點A'處,得折痕EN.則∠NEM的度數(shù)為()A.105o B.C. D.不能確定6、點P(5,-3)關于y軸的對稱點是()A.(-5,3) B.(-5,-3) C.(5,3) D.(5,-3)7、下列圖形不是軸對稱圖形的是().A. B. C. D.8、北京2022年冬奧會會徽“冬夢”正式發(fā)布.以下是參選的會徽設計的一部分圖形,其中是軸對稱圖形的是()A. B. C. D.9、下列有關綠色、環(huán)保主題的四個標志中,是軸對稱圖形是()A. B. C. D.10、如圖所示,在中,平分交于點D,,,則的度數(shù)是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,直線AD為ABC的對稱軸,BC=6,AD=4,則圖中陰影部分的面積為__________.2、如圖,若AD是的角平分線,則________________或________________.3、平面直角坐標系中,點P(3,1)關于x軸對稱的點的坐標是______.4、如圖,點D與點D'關于AE對稱,∠CED'=60°,則∠AED的度數(shù)為____.5、如圖,把四邊形ABCD紙條沿MN對折,若AD∥BC,∠α=52°,則∠AMN=_______.6、如圖,與關于直線對稱,則∠B的度數(shù)為________°.7、如圖,∠MON內有一點P,P點關于OM的軸對稱點是G,P點關于ON的軸對稱點是H,GH分別交OM、ON于A、B點,若∠MON=38°,則∠GOH=___8、如圖,方格紙中的每個小方格的邊長為1,△ABC是格點三角形(即頂點恰好是小方格的頂點).若格點△ACP與△ABC全等(不與△ABC重合),則所有滿足條件的點P有_____個.9、已知點P(a,3)、Q(﹣2,b)關于x軸對稱,則a+b=_____.10、如圖,在長方形ABCD中,AD=BC=5,AB=CD=12,AC=13,動點M在線段AC上運動(不與端點重合),點M關于邊AD,DC的對稱點分別為M1,M2,連接M1M2,點D在M1M2上,則在點M的運動過程中,線段M1M2長度的最小值是_______.三、解答題(6小題,每小題10分,共計60分)1、(閱讀與理解)折紙,常常能為證明一個命題提供思路和方法,例如,在△ABC中,AB>AC(如圖),怎樣證明∠C>∠B呢?(分析)把AC沿∠A的角平分線AD翻折,因為AB>AC,所以點C落在AB上的點C’處,即AC=AC’,據(jù)以上操作,易證明△ACD≌△AC’D,所以∠AC’D=∠C,又因為∠AC’D>∠B,所以∠C>∠B.(感悟與應用)(1)如圖(1),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,試判斷AC和AD、BC之間的數(shù)量關系,并說明理由;(2)如圖(2),在四邊形ABCD中,AC平分∠DAB,CD=CB.求證:∠B+∠D=180°.2、如圖,已知四邊形ABCD與四邊形EFGH關于直線MN對稱,∠D=130°,∠A+∠B=155°,AD=4cm,EF=5cm.(1)求出AB,EH的長度以及∠G的度數(shù);(2)連接AE,DH,AE與DH平行嗎?為什么?3、如圖,在6×6的網格中已經涂黑了三個小正方形,請按下列要求畫圖.(1)在圖1中涂黑一塊小正方形,使涂黑的四個小正方形組成一個軸對稱圖形.(2)在圖2中涂黑兩塊小正方形,使涂黑的五個小正方形組成一個軸對稱圖形.4、作圖題:(1)如圖,在11×11的正方形網格中,網格中有一個格點△ABC(即三角形的頂點都在格點上).①在圖中作出△ABC關于直線l對稱的△A1B1C1(要求A與A1,B與B1,C與C1相對應);②在直線l上找一點P,使得△PAC的周長最??;(2)在(1)問的結果下,連接BB1、CC1,求四邊形BB1C1C的面積.5、如圖,已知△ABC和直線l,作出△ABC關于直線l的對稱圖形△A'B'C′.(不寫作法,保留作圖痕跡)6、如圖,P為內一定點,M、N分別是射線OA、OB上的點,(1)當周長最小時,在圖中畫出(保留作圖痕跡);(2)在(1)的條件下,已知,求的度數(shù).-參考答案-一、單選題1、B【分析】如果一個圖形沿著某條直線對折,直線兩旁的部分能夠重合,則稱這個圖形是軸對稱圖形,這條直線叫做對稱軸;根據(jù)軸對稱圖形的概念逐一分析即可判斷.【詳解】第一、三個圖形是軸對稱圖形,第二、四個圖形不是軸對稱圖形,故符合題意的有兩個;故選:B【點睛】本題考查了軸對稱圖形的概念,掌握概念是關鍵.2、A【分析】作D點分別關于AF、AB的對稱點G、H,連接GH分別交AF、AB于C′、E′,利用軸對稱的性質得AG=AD=AH=2,利用兩點之間線段最短判斷此時△CDE周長最小為DC′+DE′+C′E′=GH=2,可得△AGH是等邊三角形,進而可得∠FAB的度數(shù).【詳解】解:如圖,作D點分別關于AF、AB的對稱點G、H,連接GH分別交AF、AB于C′、E′,連接DC′,DE′,此時△CDE周長最小為DC′+DE′+C′E′=GH=2,根據(jù)軸對稱的性質,得AG=AD=AH=2,∠DAF=∠GAF,∠DAB=∠HAB,∴AG=AH=GH=2,∴△AGH是等邊三角形,∴∠GAH=60°,∴∠FAB=∠GAH=30°,故選:A.【點睛】本題考查了軸對稱-最短路線問題:熟練掌握軸對稱的性質,會利用兩點之間線段最短解決路徑最短問題.3、A【分析】根據(jù)軸對稱圖形的定義:平面內,一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合的圖形,進行判斷即可.【詳解】解:A、是軸對稱圖形,符合題意;B、不是軸對稱圖形,不符合題意;C、不是軸對稱圖形,不符合題意;D、不是軸對稱圖形,不符合題意;故選:A.【點睛】本題考查了軸對稱圖形的識別,熟記定義是解本題的關鍵.4、A【分析】軸對稱圖形是指在平面內沿著一條直線折疊,直線兩旁的部分能夠完全重合的圖形,據(jù)此判斷各個選項即可.【詳解】解:根據(jù)軸對稱圖形的定義可得:只有A選項符合軸對稱圖形的定義,故選:A.【點睛】題目主要考查軸對稱圖形的識別,理解軸對稱圖形的定義是解題關鍵.5、B【分析】由折疊的性質可得:再結合鄰補角的含義可得答案.【詳解】解:由折疊的性質可得:故選B【點睛】本題考查的是軸對稱的性質,角平分線的含義,鄰補角的含義,利用軸對稱的性質證明是解本題的關鍵.6、B【分析】根據(jù)兩點關于y軸對稱的特征是兩點的橫坐標互為相反數(shù),縱坐標不變即可求出點的坐標.【詳解】解:∵所求點與點P(5,–3)關于y軸對稱,∴所求點的橫坐標為–5,縱坐標為–3,∴點P(5,–3)關于y軸的對稱點是(–5,–3).故選B.【點睛】本題考查兩點關于y軸對稱的知識;用到的知識點為:兩點關于y軸對稱,橫坐標互為相反數(shù),縱坐標相同.7、B【分析】根據(jù)軸對稱圖形的定義:如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,進行逐一判斷即可.【詳解】解:A、是軸對稱圖形,不符合題意;B、不是軸對稱圖形,符合題意;C、是軸對稱圖形,不符合題意;D、是軸對稱圖形,不符合題意;故選B.【點睛】本題主要考查了軸對稱圖形的識別,熟知軸對稱圖形的定義是解題的關鍵.8、A【分析】利用軸對稱圖形的概念進行解答即可.【詳解】解:A.是軸對稱圖形,故此選項符合題意;B.不是軸對稱圖形,故此選項不合題意;C.不是軸對稱圖形,故此選項不合題意;D.不是軸對稱圖形,故此選項不合題意;故選:A.【點睛】本題主要是考查了軸對稱圖形的概念,判別軸對稱圖形的關鍵是找對稱軸.9、B【分析】結合軸對稱圖形的概念進行求解.【詳解】解:A、不是軸對稱圖形,本選項不符合題意;B、是軸對稱圖形,本選項符合題意;C、不是軸對稱圖形,本選項不符合題意;D、不是軸對稱圖形,本選項不符合題意.故選:B.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.10、D【分析】根據(jù)三角形外角的性質可求得∠BAD的度數(shù),由角平分線的性質可求得∠BAC的度數(shù).【詳解】∵∠ADC是△ABD的一個外角∴∠ADC=∠B+∠BAD∴∠BAD=∠ADC-∠B=70゜-30゜=40゜∵平分∴∠BAC=2∠BAD=2×40゜=80゜故選:D【點睛】本題考查了三角形外角的性質及角平分線的性質,掌握這兩個性質是關鍵.二、填空題1、6【分析】根據(jù)軸對稱的性質判斷出陰影部分的面積的和等于三角形的面積的一半,AD⊥BC,然后根據(jù)三角形的面積列式計算即可得解.【詳解】解:∵AD所在的直線是△ABC的對稱軸,∴陰影部分的面積的和等于三角形的面積的一半,AD⊥BC,∴陰影部分的面積和=×(×6×4)=6.故答案為:6.【點睛】本題考查軸對稱的性質,對應點的連線與對稱軸的位置關系是互相垂直,對應點所連的線段被對稱軸垂直平分,對稱軸上的任何一點到兩個對應點之間的距離相等,對應的角、線段都相等.2、=∠BAD∠CAD【分析】根據(jù)角平分線的定義進行求解即可.【詳解】解:∵AD是的角平分線,∴,或,故答案為:=,∠BAC,∠BAD,∠CAD.【點睛】本題主要考查了角平分線的定義,解題的關鍵在于能夠熟記角平分線的定義.3、【分析】根據(jù)關于x軸的對稱點的坐標特征求解即可;【詳解】解:根據(jù)關于x軸的對稱點的特征,橫坐標不變,縱坐標變?yōu)橄喾磾?shù)可得:點關于軸對稱的點的坐標是;故答案是.【點睛】本題主要考查了平面直角坐標系中點的對稱性,掌握關于x軸對稱的點的特征,準確計算是解題的關鍵.4、60°【分析】由軸對稱的性質可得,再根據(jù),求解即可.【詳解】解:由對稱的性質可得,又∵,∴,故答案為.【點睛】此題考查了軸對稱的性質,以及鄰補角的性質,解題的關鍵是掌握軸對稱以及鄰補角的性質.5、【分析】如圖,設點對應點為,則根據(jù)折疊的性質求得,根據(jù)平行的性質可得,進而求得.【詳解】如圖,設點對應點為,根據(jù)折疊的性質可得,,∠α=52°,,,,.故答案為:.【點睛】本題考查了折疊的性質,平行線的性質,掌握以上性質是解題的關鍵.6、105°【分析】根據(jù)軸對稱的性質,軸對稱圖形全等,則∠A=∠A′,∠B=∠B′,∠C=∠C′,再根據(jù)三角形內角和定理即可求得.【詳解】∵△ABC與△A′B′C′關于直線l對稱,∴△ABC≌△A′B′C′,∴∠A=∠A′,∠B=∠B′,∠C=∠C′,∴∠C=∠C′=40°,∠A=∠A′=35°∴∠B=180°?35°?40°=105°.故答案為:105°.【點睛】本題考查了軸對稱圖形的性質,全等的性質,三角形內角和定理,理解軸對稱圖形的性質是解題的關鍵.7、76°【分析】連接OP,根據(jù)軸對稱的性質可得∠GOM=∠MOP,∠PON=∠NOH,然后求出∠GOH=2∠MON,代入數(shù)據(jù)計算即可得解.【詳解】解:如圖,連接OP,∵P點關于OM的軸對稱點是G,P點關于ON的軸對稱點是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=38°,∴∠GOH=2×38°=76°.故答案為:76°.【點睛】本題考查了軸對稱的性質,熟記性質并確定出相等的角是解題的關鍵.8、3【分析】如圖,把沿直線對折可得:把沿直線對折,從而可得答案.【詳解】解:如圖,把沿直線對折可得:把沿直線對折可得:所以符合條件的點有3個,故答案為:3【點睛】本題考查的軸對稱的性質,全等三角形的概念,掌握“利用軸對稱的性質確定全等三角形”是解本題的關鍵.9、-5【分析】根據(jù)關于x軸對稱的點橫坐標相同,縱坐標互為相反數(shù)即可得出結果.【詳解】解:∵點P(a,3)與點Q(﹣2,b)關于x軸對稱,∴a=﹣2,b=﹣3,∴a+b=﹣2﹣3=﹣5.故答案為:﹣5.【點睛】本題考查平面直角坐標系中關于坐標軸成軸對稱的兩點的坐標之間的關系,難度適中.10、【分析】過D作于,連接,根據(jù)題意可得,從而可以判定M1M2最小值為,即可求解.【詳解】解:過D作于,連接,如圖:長方形ABCD中,AD=BC=5,AB=CD=12,AC=13,∴∴,∵M關于邊AD,DC的對稱點分別為M1,M2,∴DM1=DM=DM2,∴,線段M1M2長度最小即是DM長度最小,此時DM⊥AC,即M與重合,M1M2最小值為.故答案為:.【點睛】此題考查了軸對稱的性質,掌握軸對稱的有關性質將的最小值轉化為的最小值是解題的關鍵.三、解答題1、(1)AC+AD=BC;(2)證明見解答過程;【分析】(1)把AC沿∠ACB的角平分線CD翻折,點A落在BC上的點A′處,連接A′D,根據(jù)直角三角形的性質求出∠A,根據(jù)三角形的外角性質得到∠A′DB=∠B,根據(jù)等腰三角形的判定定理得到A′D=A′B,結合圖形計算,證明結論;(2)將AD沿AC翻折,使D落在AB上的D′處,連接CD′,根據(jù)全等三角形的性質得到CD=CD′=BC,∠D=∠AD′C,進而證明結論;【詳解】(1)解:AC+AD=BC,理由如下:如圖,把AC沿∠ACB的角平分線CD翻折,點A落在BC上的點A′處,連接A′D,∵∠ACB=90°,∠B=30°,∴∠A=90°-∠B=60°,由折疊的性質可知,CA′=CA,A′D=AD,∠CA′D=∠A=60°,∵∠B=30°,∴∠A′DB=∠CA′D-∠B=30°,∴∠A′DB=∠B,∴A′D=A′B,∴AD=A′B,∴BC=CA′+A′B=AC+AD;(2)證明:如圖,將AD沿AC翻折,使D落在AB上的D′處,連接CD′,則△ADC≌△AD′C,∴CD=CD′=BC,∠D=∠AD′C,∴∠B=∠BD′C,∵∠BD′C+∠AD′C=180°,∴∠B+∠D=180°.【點睛】本題考查的是翻折變換的性質、等腰三角形的性質,掌握翻折變換的性質是解題的關鍵.2、(1);(2),理由見解析【分析】(1)先根據(jù)四邊形的內角和為360°和已知條件求得的度數(shù),進而根據(jù)軸對稱的性質求得AB,EH的長度以及∠G的度數(shù);(2)根據(jù)對稱的性質可知,對稱軸垂直平分對應的兩點連成的線段,則,進而根據(jù)垂直于同一直線的兩直線平行即可進行判斷.【詳解】解:(1)四邊形ABCD中,∠D=130°,∠A+∠B=155°,∵四邊形ABCD與四邊形EFGH關于直線MN對稱,AD=4cm,EF=5cm.,,(2)連接AE,DH,則已知四邊形ABCD與四邊形EFGH關于直線MN對稱,的對稱點分別為,則.【點睛】本題考查了軸對稱的性質,四邊形內角和,掌握軸對稱的性質是解題的關鍵.3、(1)見解析;(2)見解析【分析】(1)根據(jù)已知圖形判斷即可;(2)根據(jù)已知條件作圖即可;【詳解】解:(1)如圖1中,圖形即為所求.(2)如圖2中,圖形即為所求.【點睛】本題主要考查了根據(jù)軸對稱圖形的定義作圖,準確分析判斷是解題的關鍵.4、(1)①見解析;②見解析;(2)【分析】(1)①作關于直線l對稱點,再順次連接,則即為所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職第二學年(護理)老年照護專項試題及答案
- 2025年大學本科(食品質量與安全)食品分析試題及答案
- 2025年大學食品科學與工程(食品工程)試題及答案
- 2025年中職焊接技術與自動化(手工焊接)試題及答案
- 養(yǎng)老院老人心理咨詢師培訓制度
- 養(yǎng)老院心理慰藉制度
- 公共交通從業(yè)人員培訓考核制度
- 2026年人工智能計算機視覺基礎知識題庫含答案
- 2026年刮痧師中醫(yī)理論考核試題含答案
- 2026年中級公共文化服務面試題及答案
- 土壤微生物群落結構優(yōu)化研究
- 2024外研版四年級英語上冊Unit 4知識清單
- 四川省南充市2024-2025學年部編版七年級上學期期末歷史試題
- 國有企業(yè)三位一體推進內控風控合規(guī)建設的問題和分析
- 急診預檢分診課件教學
- 2025年高二數(shù)學建模試題及答案
- 儲能集裝箱知識培訓總結課件
- 幼兒園中班語言《雪房子》課件
- 房地產項目開發(fā)管理方案
- 堆垛車安全培訓課件
- 貝林妥單抗護理要點
評論
0/150
提交評論