基礎(chǔ)強化烏龍木齊第四中學(xué)7年級數(shù)學(xué)下冊第四章三角形綜合測試試題(含答案解析版)_第1頁
基礎(chǔ)強化烏龍木齊第四中學(xué)7年級數(shù)學(xué)下冊第四章三角形綜合測試試題(含答案解析版)_第2頁
基礎(chǔ)強化烏龍木齊第四中學(xué)7年級數(shù)學(xué)下冊第四章三角形綜合測試試題(含答案解析版)_第3頁
基礎(chǔ)強化烏龍木齊第四中學(xué)7年級數(shù)學(xué)下冊第四章三角形綜合測試試題(含答案解析版)_第4頁
基礎(chǔ)強化烏龍木齊第四中學(xué)7年級數(shù)學(xué)下冊第四章三角形綜合測試試題(含答案解析版)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

烏龍木齊第四中學(xué)7年級數(shù)學(xué)下冊第四章三角形綜合測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,亮亮?xí)系娜切伪荒E污染了一部分,很快他就根據(jù)所學(xué)知識畫出一個與書上完全一樣的三角形.他的依據(jù)是()A. B. C. D.2、如圖,在中,已知點,,分別為,,的中點,且,則的面積是()A. B.1 C.5 D.3、根據(jù)下列已知條件,不能畫出唯一的是()A.,, B.,,C.,, D.,,4、三根小木棒擺成一個三角形,其中兩根木棒的長度分別是和,那么第三根小木棒的長度不可能是()A. B. C. D.5、下列長度的三條線段,能組成三角形的是()A.3,4,8 B.5,6,11 C.1,3,5 D.5,6,106、如圖,E是正方形ABCD的邊DC上一點,過點A作FA=AE交CB的延長線于點F,若AB=4,則四邊形AFCE的面積是()A.4 B.8 C.16 D.無法計算7、如圖,在正方形ABCD中,E、F分別為BC、CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FP交BA延長線于點Q,下列結(jié)論:①AE=BF;②AE⊥BF;③QF=QB;④S四邊形ECFG=S△ABG.正確的個數(shù)是()A.1 B.2 C.3 D.48、下列長度的三條線段能組成三角形的是()A.348 B.4410 C.5610 D.56119、一個三角形的兩邊長分別為5和2,若該三角形的第三邊的長為偶數(shù),則該三角形的第三邊的長為()A.6 B.8 C.6或8 D.4或610、下列各組圖形中,是全等形的是()A.兩個含30°角的直角三角形B.一個鈍角相等的兩個等腰三角形C.邊長為5和6的兩個等腰三角形D.腰對應(yīng)相等的兩個等腰直角三角形第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,在△ABC中,∠ACB=90°,AC=8,BC=10,點P從點A出發(fā)沿線段AC以每秒1個單位長度的速度向終點C運動,點Q從點B出發(fā)沿折線BC﹣CA以每秒3個單位長度的速度向終點A運動,P、Q兩點同時出發(fā).分別過P、Q兩點作PE⊥l于E,QF⊥l于F,當△PEC與△QFC全等時,CQ的長為______.2、如圖,Rt△ABC中,∠ACB=90°,AB=5,BC=3,將斜邊AB繞點A順時針旋轉(zhuǎn)90°至AB′,連接B'C,則△AB′C的面積為_____.3、如圖,AC,BD相交于點O,若使,則還需添加的一個條件是_____________.(只要填一個即可)4、如圖,AE是△ABC的中線,BF是△ABE的中線,若△ABC的面積是20cm2,則S△ABF=_____cm2.5、如圖,,,,點在線段上以的速度由點向點運動,同時,點在線段上由點向點運動.它們運動的時間為設(shè)點的運動速度為,若使得與全等,則的值為______.6、如圖,中,,,是的中點,的取值范圍為________.7、如圖,點B、E、C、F在一條直線上,AB=DE,BE=CF,請?zhí)砑右粋€條件______,使△ABC≌△DEF.8、如圖,,,,則、兩點之間的距離為______.9、等腰三角形的一條邊長為4cm,另一條邊長為6cm,則它的周長是________.10、如圖,AE與BD相交于點C,AC=EC,BC=DC,AB=5cm,點P從點A出發(fā),沿A→B方向以2cm/s的速度運動,點Q從點D出發(fā),沿D→E方向以1cm/s的速度運動,P、Q兩點同時出發(fā).當點P到達點B時,P、Q兩點同時停止運動.設(shè)點P的運動時間為t(s).(1)AP的長為___cm.(用含t的代數(shù)式表示)(2)連接PQ,當線段PQ經(jīng)過點C時,t=___s.三、解答題(6小題,每小題10分,共計60分)1、探究與發(fā)現(xiàn):如圖①,在△ABC中,∠B=∠C=45°,點D在BC邊上,點E在AC邊上,且∠ADE=∠AED,連接DE.(1)當∠BAD=60°時,求∠CDE的度數(shù);(2)當點D在BC(點B、C除外)邊上運動時,試猜想∠BAD與∠CDE的數(shù)量關(guān)系,并說明理由.(3)深入探究:如圖②,若∠B=∠C,但∠C≠45°,其他條件不變,試探究∠BAD與∠CDE的數(shù)量關(guān)系.2、已知銳角,,于,于F,交于E.求證:ΔBDE≌若BD=8,DC=6,求線段BE的長度.3、平行線是平面幾何中最基本、也是非常重要的圖形.在解決某些幾何問題時,若能根據(jù)問題的需要,添加適當?shù)钠叫芯€,往往能使證明順暢、簡潔.請根據(jù)上述思想解決問題:(1)如圖(1),ABCD,試判斷∠B,∠D與∠E的關(guān)系;(2)如圖(2),已知ABCD,在∠ACD的角平分線上取兩個點M、N,使得∠AMN=∠ANM,求證:∠CAM=∠BAN.4、在中,,是射線上一點,點在的右側(cè),線段,且,連結(jié).(1)如圖1,點在線段上,求證:.(2)如圖2,點在線段延長線上,判斷與的數(shù)量關(guān)系并說明理由.5、如圖,是的中線,分別過點、作及其延長線的垂線,垂足分別為、.(1)求證:;(2)若的面積為8,的面積為6,求的面積.6、如圖,在每個小正方形的邊長均相等的網(wǎng)格中,△ABC的頂點均在格點(網(wǎng)格線的交點)上.(1)線段CD將△ABC分成面積相等的兩個三角形,且點D在邊AB上,畫出線段CD.(2)△CBE≌△CBD,且點E在格點上,畫出△CBE.-參考答案-一、單選題1、C【分析】根據(jù)題意,可知仍可辨認的有1條邊和2個角,且邊為兩角的夾邊,即可根據(jù)來畫一個完全一樣的三角形【詳解】根據(jù)題意可得,已知一邊和兩個角仍保留,且邊為兩角的夾邊,根據(jù)兩個三角形對應(yīng)的兩角及其夾邊相等,兩個三角形全等,即故選C【點睛】本題考查了三角形全等的性質(zhì)與判定,掌握三角形的判定方法是解題的關(guān)鍵.2、B【分析】根據(jù)三角形面積公式由點為的中點得到,同理得到,則,然后再由點為的中點得到.【詳解】解:點為的中點,,點為的中點,,,點為的中點,.故選:.【點睛】本題考查了三角形的中線與面積的關(guān)系,解題的關(guān)鍵是掌握是三角形的中線把三角形的面積平均分成兩半.3、B【分析】根據(jù)三角形存在的條件去判斷.【詳解】∵,,,滿足ASA的要求,∴可以畫出唯一的三角形,A不符合題意;∵,,,∠A不是AB,BC的夾角,∴可以畫出多個三角形,B符合題意;∵,,,滿足SAS的要求,∴可以畫出唯一的三角形,C不符合題意;∵,,,AB最大,∴可以畫出唯一的三角形,D不符合題意;故選B.【點睛】本題考查了三角形的存在性,熟練掌握三角形全等的判定方法是解題的關(guān)鍵.4、D【分析】設(shè)第三根木棒長為x厘米,根據(jù)三角形的三邊關(guān)系可得8﹣5<x<8+5,確定x的范圍即可得到答案.【詳解】解:設(shè)第三根木棒長為x厘米,由題意得:8﹣5<x<8+5,即3<x<13,故選:D.【點睛】此題主要考查了三角形的三邊關(guān)系,要注意三角形形成的條件:任意兩邊之和>第三邊,任意兩邊之差<第三邊.5、D【分析】根據(jù)圍成三角形的條件逐個分析求解即可.【詳解】解:A、∵,∴3,4,8不能圍成三角形,不符合題意;B、∵,∴5,6,11不能圍成三角形,不符合題意;C、∵,∴1,3,5不能圍成三角形,不符合題意;D、∵,∴5,6,10能圍成三角形,符合題意,故選:D.【點睛】此題考查了圍成三角形的條件,解題的關(guān)鍵是熟練掌握圍成三角形的條件.圍成三角形的條件:兩邊之和大于第三邊,兩邊只差小于第三邊.6、C【分析】先證明可得從而可得答案.【詳解】解:正方形ABCD,AB=4,故選C【點睛】本題考查的是小學(xué)涉及的正方形的性質(zhì),直角三角形全等的判定與性質(zhì),證明是解本題的關(guān)鍵.7、D【分析】首先證明△ABE≌△BCF,再利用角的關(guān)系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF對折,得到△BPF,利用角的關(guān)系求出QF=QB;由Rt△ABE≌Rt△BCF得S△ABE=S△BCF即可判定④正確.【詳解】解:∵E,F(xiàn)分別是正方形ABCD邊BC,CD的中點,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正確;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正確;根據(jù)題意得,F(xiàn)P=FC,∠PFB=∠BFC,∠FPB=90°,∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正確;∵Rt△ABE≌Rt△BCF,∴S△ABE=S△BCF,∴S△ABE﹣S△BEG=S△BCF﹣S△BEG,即S四邊形ECFG=S△ABG,故④正確.故選:D.【點睛】本題主要是考查了三角形全等、正方形的性質(zhì),熟練地綜合應(yīng)用全等三角形以及正方形的性質(zhì),證明邊相等和角相等,是解決本題的關(guān)鍵.8、C【分析】根據(jù)三角形的任意兩邊之和大于第三邊對各選項分析判斷求解即可.【詳解】解:A.∵3+4<8,∴不能組成三角形,故本選項不符合題意;B.∵4+4<10,∴不能組成三角形,故本選項不符合題意;C.∵5+6>10,∴能組成三角形,故本選項符合題意;D.∵5+6=11,∴不能組成三角形,故本選項不符合題意;故選:C.【點睛】本題考查了三角形的三邊關(guān)系,熟記三角形的任意兩邊之和大于第三邊是解決問題的關(guān)鍵.9、D【分析】根據(jù)三角形兩邊之和大于第三邊確定第三邊的范圍,根據(jù)題意計算即可.【詳解】解:設(shè)三角形的第三邊長為x,則5﹣2<x<5+2,即3<x<7,∵三角形的第三邊是偶數(shù),∴x=4或6,故選:D.【點睛】本題考查了三角形三邊關(guān)系,在一個三角形中,任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.10、D【分析】根據(jù)兩個三角形全等的條件依據(jù)三角形全等判定方法SSS,SAS,AAS,SAS,HL逐個判斷得結(jié)論.【詳解】解:A、兩個含30°角的直角三角形,缺少對應(yīng)邊相等,故選項A不全等;B、一個鈍角相等的兩個等腰三角形.缺少對應(yīng)邊相等,故選項B不全等;C、腰為5底為6的三角形和腰為6底為5的三角形不全等,故選項C不全等;D、腰對應(yīng)相等,頂角是直角的兩個三角形滿足“邊角邊”,故選項D是全等形.故選:D.【點睛】本題主要考查了三角形全等的判定方法;需注意:判定兩個三角形全等時,必須有邊的參與,還要找準對應(yīng)關(guān)系.二、填空題1、7或3.5【分析】分兩種情況:(1)當P在AC上,Q在BC上時;(2)當P在AC上,Q在AC上時,即P、Q重合時;【詳解】解:當P在AC上,Q在BC上時,∵∠ACB=90°,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠PEC=∠CFQ=90°,∴∠EPC+∠PCE=90°,∴∠EPC=∠QCF,∵△PEC與△QFC全等,∴此時是△PCE≌△CQF,∴PC=CQ,∴8-t=10-3t,解得t=1,∴CQ=10-3t=7;當P在AC上,Q在AC上時,即P、Q重合時,則CQ=PC,由題意得,8-t=3t-10,解得t=4.5,∴CQ=3t-10=3.5,綜上,當△PEC與△QFC全等時,滿足條件的CQ的長為7或3.5,故答案為:7或3.5.【點睛】本題主要考查了全等三角形的性質(zhì),根據(jù)題意得出關(guān)于的方程是解題的關(guān)鍵.2、【分析】根據(jù)題意過點B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,則有S△AB'C=AC?B′H即可求得答案.【詳解】解:過點B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC?B′H=×4×4=8.故答案為:8.【點睛】本題主要考查三角形全等的判定與性質(zhì)和旋轉(zhuǎn)的性質(zhì)以及勾股定理,根據(jù)題意利用全等三角形的判定證明△ACB≌△B'HA是解決問題的關(guān)鍵.3、OA=OD或AB=CD或OB=OC【分析】添加條件是,根據(jù)推出兩三角形全等即可.【詳解】解:,理由是:在和中,,理由是:在和中,,理由是:在和中,故答案為:OA=OD或AB=CD或OB=OC.【點睛】本題主要考查了全等三角形的判定,解題的關(guān)鍵是掌握全等三角形的5種判定方法中,選用哪一種方法,取決于題目中的已知條件,若已知兩邊對應(yīng)相等,則找它們的夾角或第三邊;若已知兩角對應(yīng)相等,則必須再找一組對邊對應(yīng)相等,且要是兩角的夾邊,若已知一邊一角,則找另一組角,或找這個角的另一組對應(yīng)鄰邊.4、5【分析】利用三角形的中線把三角形分成面積相等的兩個三角形進行解答.【詳解】解:∵AE是△ABC的中線,BF是△ABE的中線,∴S△ABF=S△ABC=×20=5cm2.故答案為:5.【點睛】本題考查了三角形的面積,能夠利用三角形的中線把三角形分成面積相等的兩個三角形的性質(zhì)求解是解題的關(guān)鍵.5、或【分析】分兩種情形:①當≌時,可得:;②當≌時,,根據(jù)全等三角形的性質(zhì)分別求解即可.【詳解】解:①當≌時,可得:,運動時間相同,,的運動速度也相同,;②當≌時,,,,,故答案為:或.【點睛】本題考查全等三角形的性質(zhì),路程、速度、時間之間的關(guān)系等知識,解題的關(guān)鍵是理解題意,靈活運用所學(xué)知識進行分類解決問題.6、【分析】延長AD到E,使,連接,證,得到,在中,根據(jù)三角形三邊關(guān)系定理得出,代入求出即可.【詳解】解:延長AD到E,使,連接,如圖所示:∵AD是BC邊上的中線,∴,在和中,,∴,∴,在中,,∴,∴,故答案為:.【點睛】本題考查了全等三角形的性質(zhì)和判定,三角形的三邊關(guān)系定理的應(yīng)用,熟練掌握相關(guān)基本性質(zhì)是解題的關(guān)鍵.7、(答案不唯一)【分析】添加條件AC=DF,即可利用SSS證明△ABC≌△DEF.【詳解】解:添加條件AC=DF,∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),故答案為:AC=DF(答案不唯一).【點睛】本題主要考查了全等三角形的判定,解題的關(guān)鍵在于能夠熟練掌握全等三角形的判定條件.8、55【分析】根據(jù)題意首先證明△AOB和△DOC全等,再根據(jù)全等三角形對應(yīng)邊相等即可得出答案.【詳解】解:,,,即,在和中,,≌,.故答案為:.【點睛】本題主要考查全等三角形的應(yīng)用以及兩點之間的距離,解題的關(guān)鍵是掌握全等三角形對應(yīng)邊相等.9、16cm或14cm【分析】根據(jù)題意分腰為6cm和底為6cm兩種情況,分別求出即可.【詳解】解:①當腰為6cm時,它的周長為6+6+4=16(cm);②當?shù)诪?cm時,它的周長為6+4+4=14(cm);故答案為:16cm或14cm.【點睛】本題考查了等腰三角形的性質(zhì)的應(yīng)用,注意:等腰三角形的兩腰相等,注意分類討論.10、2【分析】(1)根據(jù)路程=速度×?xí)r間求解即可;(2)根據(jù)全等三角形在判定證明△ACB≌△ECD可得AB=DE,∠A=∠E,當PQ經(jīng)過點C時,可證得△ACP≌△ECQ,則有AP=EQ,進而可得出t的方程,解方程即可.【詳解】解:(1)由題意知:AP=2t,0<t≤,故答案為:2t;(2)∵AC=EC,∠ACB=∠ECD,BC=DC,∴△ACB≌△ECD(SAS),∴DE=AB=5cm,∠A=∠E,當PQ經(jīng)過點C時,∵∠A=∠E,AC=EC,∠ACP=∠ECQ,∴△ACP≌△ECQ(ASA),∴AP=EQ,又∵AP=2t,DQ=t,∴2t=5-t,解得:t=,故答案為:.【點睛】本題考查全等三角形的應(yīng)用,熟練掌握全等三角形的判定與性質(zhì)是解答的關(guān)鍵.三、解答題1、(1)30°;(2)∠BAD=2∠CDE,理由見解析;(3)∠BAD=2∠CDE.【分析】(1)根據(jù)三角形的外角的性質(zhì)求出∠ADC,結(jié)合圖形計算即可;(2)設(shè)∠BAD=x,根據(jù)三角形的外角的性質(zhì)求出∠ADC,結(jié)合圖形計算即可;(3)設(shè)∠BAD=x,仿照(2)的解法計算.【詳解】解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠BAD+∠B=105°,∠DAE=∠BAC﹣∠BAD=30°,∴∠ADE=∠AED=75°,∴∠CDE=105°﹣75°=30°;(2)∠BAD=2∠CDE,理由如下:設(shè)∠BAD=x,∴∠ADC=∠BAD+∠B=45°+x,∠DAE=∠BAC﹣∠BAD=90°﹣x,∴∠ADE=∠AED=,∴∠CDE=45°+x﹣=x,∴∠BAD=2∠CDE;(3)設(shè)∠BAD=x,∴∠ADC=∠BAD+∠B=∠B+x,∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,∴∠ADE=∠AED=∠C+x,∴∠CDE=∠B+x﹣(∠C+x)=x,∴∠BAD=2∠CDE.【點睛】本題考查了三角形內(nèi)角和和外角的性質(zhì),解題關(guān)鍵是熟練掌握三角形內(nèi)角和和外角性質(zhì),通過設(shè)參數(shù)計算,發(fā)現(xiàn)角之間的關(guān)系2、(1)見解析;(2)10.【分析】(1)由題意可得AD=BD,由余角的性質(zhì)可得∠CBE=∠DAC,根據(jù)“ASA”可證△BDE≌△ADC;(2)由全等三角形的性質(zhì)可得AD=BD=4,CD=DF=3,BF=AC,由三角形的面積公式可求BE的長度.【詳解】(1)證明:∵,∠ABC=45°∴∠ABC=∠BAD=45°,∴AD=BD,∵DA⊥BC,BE⊥AC∴∠ACD+∠DAC=90°,∠ACD+∠CBE=90°∴∠CBE=∠DAC,∵AD=BD,∠ADC=∠ADB=90°∴△BDE≌△ADC{ASA);(2)∵△BDE≌△ADC∴AD=BD=8,CD=DE=6,BE=AC∴【點睛】本題主要考查了全等三角形的判定與性質(zhì)、勾股定理等知識點,靈活應(yīng)用全等三角形的判定與性質(zhì)成為解答本題的關(guān)鍵.3、(1)∠BED=∠B+∠D;(2)證明見詳解.【分析】(1)作EF∥AB,證明AB∥EF∥CD,得到∠B=∠BEF,∠D=∠DEF,即可證明∠BED=∠B+∠D;(2)根據(jù)(1)結(jié)論得到∠N=∠BAN+∠DCN,進而得到∠AMN=∠BAN+∠DCN,根據(jù)三角形外角定理得到∠AMN=∠ACM+∠CAM,∠BAN+∠DCN=∠ACM+∠CAM,再根據(jù)∠DCN=∠CAN,即可證明∠CAM=∠BAN.【詳解】解:如圖1,作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∵∠BED=∠BEF+∠DEF,∴∠BED=∠B+∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論