版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,該幾何體的左視圖是()A. B. C. D.2、如圖,PA,PB是⊙O的切線,A,B為切點,PA=4,則PB的長度為()A.3 B.4 C.5 D.63、如圖,△ABC外接于⊙O,∠A=30°,BC=3,則⊙O的半徑長為()A.3 B. C. D.4、如圖是由5個相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.5、如圖,邊長為5的等邊三角形中,M是高所在直線上的一個動點,連接,將線段繞點B逆時針旋轉(zhuǎn)得到,連接.則在點M運動過程中,線段長度的最小值是()A. B.1 C.2 D.6、平面直角坐標系中點關于原點對稱的點的坐標是()A. B. C. D.7、如圖,在中,,,將繞點C逆時針旋轉(zhuǎn)90°得到,則的度數(shù)為()A.105° B.120° C.135° D.150°8、下列事件是確定事件的是()A.方程有實數(shù)根 B.買一張體育彩票中大獎C.拋擲一枚硬幣正面朝上 D.上海明天下雨第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、到點的距離等于8厘米的點的軌跡是__.2、如圖,在中,,是內(nèi)的一個動點,滿足.若,,則長的最小值為_______.3、把一副普通撲克牌中的13張黑桃牌洗勻后正面朝下放在桌子上,從中隨機抽取一張,則抽出的牌上的數(shù)小于5的概率為_____.4、在平面直角坐標系中,點關于原點對稱的點的坐標是______.5、在圓內(nèi)接四邊形ABCD中,,則的度數(shù)為______.6、如圖,AB是半圓O的弦,DE是直徑,過點B的切線BC與⊙O相切于點B,與DE的延長線交于點C,連接BD,若四邊形OABC為平行四邊形,則∠BDC的度數(shù)為______.7、在平面直角坐標系中,點,圓C與x軸相切于點A,過A作一條直線與圓交于A,B兩點,AB中點為M,則OM的最大值為______.三、解答題(7小題,每小題0分,共計0分)1、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點G,且,過點C作的垂線交的延長線于點H.(1)判斷與⊙的位置關系并說明理由;(2)若,求弧的長.2、小宇和小偉玩“石頭、剪刀、布”的游戲.這個游戲的規(guī)則是:“剪刀”勝“布”,“布”勝“石頭”,“石頭”勝“剪刀”,手勢相同不分勝負.如果二人同時隨機出手(分別出三種手勢中的一種手勢)一次,那么小宇獲勝的概率是多少?3、一個幾何體的三個視圖如圖所示(單位:cm).(1)寫出這個幾何體的名稱:;(2)若其俯視圖為正方形,根據(jù)圖中數(shù)據(jù)計算這個幾何體的表面積.4、如圖,已知在中,,D、E是BC邊上的點,將繞點A旋轉(zhuǎn),得到,連接.(1)當時,時,求證:;(2)當時,與有怎樣的數(shù)量關系?請寫出,并說明理由.(3)在(2)的結(jié)論下,當,BD與DE滿足怎樣的數(shù)量關系時,是等腰直角三角形?(直接寫出結(jié)論,不必證明)5、在等邊中,是邊上一動點,連接,將繞點順時針旋轉(zhuǎn)120°,得到,連接.(1)如圖1,當、、三點共線時,連接,若,求的長;(2)如圖2,取的中點,連接,猜想與存在的數(shù)量關系,并證明你的猜想;(3)如圖3,在(2)的條件下,連接、交于點.若,請直接寫出的值.6、在平面直角坐標系xOy中,給出如下定義:若點P在圖形M上,點Q在圖形N上,稱線段PQ長度的最小值為圖形M,N的“近距離”,記為d(M,N),特別地,若圖形M,N有公共點,規(guī)定d(M,N)=0.已知:如圖,點A(,0),B(0,).(1)如果⊙O的半徑為2,那么d(A,⊙O)=,d(B,⊙O)=.(2)如果⊙O的半徑為r,且d(⊙O,線段AB)=0,求r的取值范圍;(3)如果C(m,0)是x軸上的動點,⊙C的半徑為1,使d(⊙C,線段AB)<1,直接寫出m的取值范圍.7、如圖,已知AB是⊙O的直徑,,連接OC,弦,直線CD交BA的延長線于點.(1)求證:直線CD是⊙O的切線;(2)若,,求OC的長.-參考答案-一、單選題1、C【分析】根據(jù)從左邊看得到的圖形是左視圖解答即可.【詳解】解:從左邊看是一個正方形被水平的分成3部分,中間的兩條分線是虛線,故C正確.故選C.【點睛】本題主要考查了簡單組合體的三視圖,掌握三視圖的定義成為解答本題的關鍵.2、B【分析】由切線的性質(zhì)可推出,.再根據(jù)直角三角形全等的判定條件“HL”,即可證明,即得出.【詳解】∵PA,PB是⊙O的切線,A,B為切點,∴,,∴在和中,,∴,∴.故選:B【點睛】本題考查切線的性質(zhì),三角形全等的判定和性質(zhì).熟練掌握切線的性質(zhì)是解答本題的關鍵.3、A【分析】分析:連接OA、OB,根據(jù)圓周角定理,易知∠AOB=60°;因此△ABO是等邊三角形,即可求出⊙O的半徑.【詳解】解:連接BO,并延長交⊙O于D,連結(jié)DC,∵∠A=30°,∴∠D=∠A=30°,∵BD為直徑,∴∠BCD=90°,在Rt△BCD中,BC=3,∠D=30°,∴BD=2BC=6,∴OB=3.故選A.【點睛】本題考查了圓周角性質(zhì),利用同弧所對圓周角性質(zhì)與直徑所對圓周角性質(zhì),30°角所對直角三角形性質(zhì),掌握圓周角性質(zhì),利用同弧所對圓周角性質(zhì)與直徑所對圓周角性質(zhì),30°角所對直角三角形性質(zhì)是解題的關鍵.4、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在左視圖中.【詳解】從左面看,第一層有2個正方形,第二層左側(cè)有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,熟知左視圖是從物體的左面看得到的視圖是解答本題的關鍵.5、A【分析】取CB的中點G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對應邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】解:如圖,取BC的中點G,連接MG,∵旋轉(zhuǎn)角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉(zhuǎn)到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故選A.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構造出全等三角形是解題的關鍵,也是本題的難點.6、B【分析】根據(jù)關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數(shù),即可求解.【詳解】解:平面直角坐標系中點關于原點對稱的點的坐標是故選B【點睛】本題考查了關于原點對稱的點的特征,掌握關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數(shù)是解題的關鍵.7、B【分析】由題意易得,然后根據(jù)三角形外角的性質(zhì)可求解.【詳解】解:由旋轉(zhuǎn)的性質(zhì)可得:,∴;故選B.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì)及三角形外角的性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì)及三角形外角的性質(zhì)是解題的關鍵.8、A【分析】隨機事件:是指在一定條件下可能發(fā)生也可能不發(fā)生的事件,根據(jù)隨機事件的分類對各個選項逐個分析,即可得到答案【詳解】解:.方程無實數(shù)根,因此“方程有實數(shù)”是不可能事件,所以選項符合題意;B.買一張體育彩票可能中大獎,有可能不中,因此是隨機事件,所以選項B不符合題意;C.拋擲一枚硬幣,可能正面朝上,有可能反面朝上,因此是隨機事件,所以選項C不符合題意;D.上海明天可能下雨,有可能不下雨,因此是隨機事件,所以選項D不符合題意;故選:.【點睛】本題考查的是確定事件與隨機事件的概念,掌握確定事件分為必然事件,不可能事件,及隨機事件的概念是解題的關鍵.二、填空題1、以點為圓心,8厘米長為半徑的圓【分析】由題意直接根據(jù)圓的定義進行分析即可解答.【詳解】到點的距離等于8厘米的點的軌跡是:以點為圓心,2厘米長為半徑的圓.故答案為:以點為圓心,8厘米長為半徑的圓.【點睛】本題主要考查了圓的定義,正確理解定義是關鍵,注意掌握圓的定義是在同一平面內(nèi)到定點的距離等于定長的點的集合.2、2【分析】取AC中點O,由勾股定理的逆定理可知∠ADC=90°,則點D在以O為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,由此求解即可.【詳解】解:如圖所示,取AC中點O,∵,即,∴∠ADC=90°,∴點D在以O為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,∵,,∠ACB=90°,∴,∴,∴,∴,故答案為:2.【點睛】本題主要考查了一點到圓上一點的最短距離,勾股定理的逆定理,勾股定理,解題的關鍵在于確定點D的運動軌跡.3、【分析】抽出的牌的點數(shù)小于5有1,2,3,4共4個,總的樣本數(shù)目為13,由此可以容易知道事件抽出的牌的點數(shù)小于5的概率.【詳解】解:∵抽出的牌的點數(shù)小于5有1,2,3,4共4個,總的樣本數(shù)目為13,∴從中任意抽取一張,抽出的牌點數(shù)小于5的概率是:.故答案為:.【點睛】此題主要考查了概率的求法.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.4、(3,4)【分析】關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).【詳解】:由題意,得點(-3,-4)關于原點對稱的點的坐標是(3,4),故答案為:(3,4).【點睛】本題考查了關于原點對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規(guī)律:關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).5、110°【分析】根據(jù)圓內(nèi)接四邊形對角互補,得∠D+∠B=180°,結(jié)合已知求解即可.【詳解】∵圓內(nèi)接四邊形對角互補,∴∠D+∠B=180°,∵∴∠D=110°,故答案為:110°.【點睛】本題考查了圓內(nèi)接四邊形互補的性質(zhì),熟練掌握并運用性質(zhì)是解題的關鍵.6、【分析】先由切線的性質(zhì)得到∠OBC=90°,再由平行四邊形的性質(zhì)得到BO=BC,則∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.【詳解】解:∵BC是圓O的切線,∴∠OBC=90°,∵四邊形ABCO是平行四邊形,∴AO=BC,又∵AO=BO,∴BO=BC,∴∠BOC=∠BCO=45°,∵OD=OB,∴∠ODB=∠OBD,∵∠ODB+∠OBD=∠BOC,∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,故答案為:22.5°.【點睛】本題主要考查了平行四邊形的性質(zhì),切線的性質(zhì),等腰三角形的性質(zhì)與判定,三角形外角的性質(zhì),熟知切線的性質(zhì)是解題的關鍵.7、##【分析】如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點,先求出A點坐標,從而可證OM是△ABD的中位線,得到,則當BD最小時,OM也最小,即當B運動到時,BD有最小值,由此求解即可.【詳解】解:如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點∵點C的坐標為(2,2),圓C與x軸相切于點A,∴點A的坐標為(2,0),∴OA=OD=2,即O是AD的中點,又∵M是AB的中點,∴OM是△ABD的中位線,∴,∴當BD最小時,OM也最小,∴當B運動到時,BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案為:.【點睛】本題主要考查了坐標與圖形,一點到圓上一點的距離得到最小值,兩點距離公式,三角形中位線定理,把求出OM的最小值轉(zhuǎn)換成求BD的最小值是解題的關鍵.三、解答題1、(1)相切,見解析(2)【分析】(1)連接OC、OD、AC,OC交AF于點M,根據(jù)AG=CG,CD⊥AB,可得,從而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求證;(2)先證明四邊形CMFH為矩形,可得OC⊥AF,CM=HF=2,從而得到AM=FM,進而得到OM=BF=2,可得到CM=OM,進而得到OC=4,AM垂直平分OC,可證得△AOC為等邊三角形,即可求解.(1)解:CH與⊙O相切.理由如下:如圖,連接OC、OD、AC,OC交AF于點M,∵AG=CG,∴∠ACG=∠CAG,∴,∵CD⊥AB,∴,∴,∴OC⊥AF,∵AB為直徑,∴∠AFB=90°,∵BH⊥CH,∴CH∥AF,∴OC⊥CH,∵OC為半徑,∴CH為⊙O的切線;(2)解:由(1)得:BH⊥CH,OC⊥CH,∴OC∥BH,∵CH∥AF,∴四邊形CMFH為平行四邊形,∵OC⊥CH,∴∠OCH=90°,∴四邊形CMFH為矩形,∴OC⊥AF,CM=HF=2,∴AM=FM,∵點O為AB的中點,∴OM=BF=2,∴CM=OM,∴OC=4,AM垂直平分OC,∴AC=AO,而AO=OC,∴AC=OC=OA,,∴△AOC為等邊三角形,∴∠AOC=60°,∵,∴∠AOD=∠AOC=60°,∴∠COD=120°,∴弧CD的長度為.【點睛】本題主要考查了圓的基本性質(zhì),垂徑定理,切線的判定,等邊三角形的判定和性質(zhì),熟練掌握相關知識點是解題的關鍵.2、小宇獲勝的概率是,見解析.【分析】根據(jù)題意畫樹狀圖表示出所有等可能的情況,繼而解題.【詳解】解:畫樹狀圖如下,所有機會均等的情況共9種,小宇獲勝的概率為:,答:小宇獲勝的概率是.【點睛】本題考查用列表法或畫樹狀圖表示概率,是基礎考點,掌握相關知識是解題關鍵.3、(1)長方體或四棱柱(2)66cm2【分析】(1)這個立方體的三視圖都是長方形所以這個幾何體應該是長方體;(2)長方體一共有6個面,算長方體的表面積應該把這6個面的面積相加即可.(1)∵這個立方體的三視圖都是長方形,∴這個立方體是長方體或四棱柱.(2)由三視圖知該長方體的表面積:(3)(3×4)×4+(3×3)×2=66(cm2)【點睛】本題考查了由立體圖形的三視圖確定立體圖形的形狀;根據(jù)邊長求表面積大小.解題的關鍵是要有空間想象能力.長方體有六個面,算表面積時不要遺漏.4、(1)見解析;(2)∠DAE=∠BAC,見解析;(3)DE=BD,見解析【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AD=AD′,∠CAD′=∠BAD,然后求出∠D′AE=60°,從而得到∠DAE=∠D′AE,再利用“邊角邊”證明△ADE和△AD′E全等,根據(jù)全等三角形對應邊相等證明即可;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AD=AD′,再利用“邊邊邊”證明△ADE和△AD′E全等,然后根據(jù)全等三角形對應角相等求出∠DAE=∠D′AE,然后求出∠BAD+∠CAE=∠DAE,從而得解;(3)求出∠D′CE=90°,然后根據(jù)等腰直角三角形斜邊等于直角邊的倍可得D′E=CD′,再根據(jù)旋轉(zhuǎn)的性質(zhì)解答即可.【詳解】(1)證明:∵△ABD繞點A旋轉(zhuǎn)得到△ACD′,∴AD=AD′,∠CAD′=∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D′AE=∠CAD′+∠CAE=∠BAD+∠CAE=∠BAC?∠DAE=120°?60°=60°,∴∠DAE=∠D′AE,在△ADE和△AD′E中,,∴△ADE≌△AD′E(SAS),∴DE=D′E;(2)解:∠DAE=∠BAC.理由如下:在△ADE和△AD′E中,,∴△ADE≌△AD′E(SSS),∴∠DAE=∠D′AE,∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,∴∠DAE=∠BAC;(3)解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD′=45°,∴∠D′CE=45°+45°=90°,∵△D′EC是等腰直角三角形,∴D′E=CD′,由(2)DE=D′E,∵△ABD繞點A旋轉(zhuǎn)得到△ACD′,∴BD=C′D,∴DE=BD.【點睛】本題考查了幾何變換的綜合題,旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),熟記旋轉(zhuǎn)變換只改變圖形的位置不改變圖形的形狀與大小找出三角形全等的條件是解題的關鍵.5、(1);(2);證明見解析;(3)【分析】(1)過點作于點,根據(jù)等邊三角形的性質(zhì)與等腰的性質(zhì)以及勾股定理求得,進而求得,在中,,,勾股定理即可求解;(2)延長至,使得,連接,過點作,交于點,根據(jù)平行四邊形的性質(zhì)可得,,證明是等邊三角形,進而證明,即可證明是等邊三角形,進而根據(jù)三線合一以及含30度角的直角三角形的性質(zhì),可得;(3)過點作于點,過點作,連接,交于點,過點作,交于點,過點作于點,先證明,結(jié)合中位線定理可得,進而可得,設,分別勾股定理求得,進而根據(jù)求得,即可求得的值【詳解】(1)過點作于點,如圖將繞點順時針旋轉(zhuǎn)120°,得到,是等邊三角形,,在中,,(2)如圖,延長至,使得,連接,過點作,交于點,點是的中點又四邊形是平行四邊形,將繞點順時針旋轉(zhuǎn)120°,得到,是等邊三角形,,是等邊三角形設,則,,,是等邊三角形,即(3)如圖,過點作于點,過點作,連接,交于點,過點作,交于點,過點作于點,四點共圓由(2)可知,將繞點順時針旋轉(zhuǎn)120°,得到,是的中點,是的中位線是等腰直角三角形四邊形是矩形,設在中,,在中,在中【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì)與判定,含30度角的直角三角形的性質(zhì),勾股定理,同弧所對的圓周角相等,四點共圓,三角形全等的性質(zhì)與判定,等腰三角形的性質(zhì)與判定;掌握旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì)與判定是解題的關鍵.6、(1)0,;(2);(3)【分析】(1)根據(jù)新定義
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職種子生產(chǎn)與經(jīng)營(種子加工技術)試題及答案
- 2025年中職(新能源汽車技術)新能源汽車概論實務試題及答案
- 2025年中職商務助理(公文寫作)試題及答案
- 2025年大學植物學(應用實操)試題及答案
- 2025年大學生物(微生物基礎)試題及答案
- 2025年大學石油煉制生產(chǎn)操作(操作規(guī)范)試題及答案
- 2025年大學環(huán)境工程(環(huán)境工程施工)試題及答案
- 2025年中職無人機駕駛(植保)(植保作業(yè)操作)試題及答案
- 養(yǎng)老院老人請假制度
- 養(yǎng)老院老人生活娛樂活動組織人員職業(yè)發(fā)展規(guī)劃制度
- 公司電腦使用規(guī)范制度
- 2026天津市津南創(chuàng)騰經(jīng)濟開發(fā)有限公司招聘8人筆試參考題庫及答案解析
- 特種作業(yè)培訓課件模板
- 2025年時事政治知識考試試題題庫試題附答案完整版
- 高校宿舍管理員培訓課件
- 河南省開封市2026屆高三年級第一次質(zhì)量檢測歷史試題卷+答案
- 員工通勤安全培訓課件
- 歲末年初安全知識培訓課件
- 全國秸稈綜合利用重點縣秸稈還田監(jiān)測工作方案
- 中小企業(yè)人才流失問題及對策分析
- 2026年湖南鐵路科技職業(yè)技術學院單招職業(yè)傾向性測試題庫含答案
評論
0/150
提交評論