版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
吉林省大安市中考數(shù)學(xué)真題分類(平行線的證明)匯編達(dá)標(biāo)測試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,在中,,,平分,則的度數(shù)是(
)A. B. C. D.2、如圖,有以下四個條件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=∠5,其中能判定AB∥CD的條件的個數(shù)有(
)A.1 B.2 C.3 D.43、如圖所示,下列推理及括號中所注明的推理依據(jù)錯誤的是(
)A.,(內(nèi)錯角相等,兩直線平行)B.,(兩直線平行,同旁內(nèi)角互補(bǔ))C.,(兩直線平行,同旁內(nèi)角互補(bǔ))D.,(同位角相等,兩直線平行)4、在△ABC中,如果∠A﹣∠B=90°,那么△ABC是()A.直角三角形 B.鈍角三角形 C.銳角三角形 D.斜三角形5、如圖,點(diǎn)E在射線AB上,要ADBC,只需(
)A.∠A=∠CBE B.∠A=∠C C.∠C=∠CBE D.∠A+∠D=180°6、如圖,EF與的邊BC,AC相交,則與的大小關(guān)系為(
).A. B.C. D.大小關(guān)系取決于的度數(shù)7、下面是投影屏上出示的搶答題,需要回答橫線上符號代表的內(nèi)容.則回答正確的是()已知:如圖,∠BEC=∠B+∠C.求證:AB∥CD.證明:延長BE交※于點(diǎn)F,則∠BEC=180°﹣∠FEC=◎+∠C.又∠BEC=∠B+∠C,得∠B=▲.故AB∥CD(@相等,兩直線平行).A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB8、已知,在中,,點(diǎn)在線段的延長線上,過點(diǎn)作,垂足為,若,則的度數(shù)為(
)A.76° B.65° C.56° D.54°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、將△ABC沿著DE翻折,使點(diǎn)A落到點(diǎn)A′處,A′D、A′E分別與BC交于M、N兩點(diǎn),且DEBC.已知∠A′NM=27°,則∠NEC=_____.2、如圖,,的平分線相交于點(diǎn),的平分線相交于點(diǎn),,的平分線相交于點(diǎn)……以此類推,則的度數(shù)是___________(用含與的代數(shù)式表示).3、如圖,在中,平分,DEAC,若,,那么__.4、用反證法證明:“如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行”.第一步應(yīng)假設(shè):______.5、如圖,在△ABC中,∠C=62°,△ABC兩個外角的角平分線相交于G,則∠G的度數(shù)為_____.6、如圖,三角形ABC中,D是AB上一點(diǎn),F(xiàn)是BC上一點(diǎn),E,H是AC上的點(diǎn),EF的延長線交AB的延長線于點(diǎn)G,連接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,則∠ADE的度數(shù)為__.7、如圖,將三角尺和三角尺(其中)擺放在一起,使得點(diǎn)在同一條直線上,交于點(diǎn),那么度數(shù)等于_____.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,∠ABC=31°,又∠BAC的平分線AE與∠FCB的平分線CE相交于E點(diǎn),求∠AEC的度數(shù).2、請閱讀下列材料,并完成相應(yīng)的任務(wù):有趣的“飛鏢圖”如圖,這種形似飛鏢的四邊形,可以形象地稱它為“飛鏢圖”.當(dāng)我們仔細(xì)觀察后發(fā)現(xiàn),它實(shí)際上就是凹四邊形.那么它具有哪些性質(zhì)呢?又將怎樣應(yīng)用呢?下面我們進(jìn)行認(rèn)識與探究:凹四邊形通俗地說,就是一個角“凹”進(jìn)去的四邊形,其性質(zhì)有:凹四邊形中最大內(nèi)角外面的角等于其余三個內(nèi)角之和.(即如圖1,∠ADB=∠A+∠B+∠C)理由如下:方法一:如圖2,連接AB,則在△ABC中,∠C+∠CAB+∠CBA=180°,即∠1+∠2+∠3+∠4+∠C=180°,又∵在△ABD中,∠1+∠2+∠ADB=180°,∴∠ADB=∠3+∠4+∠C,即∠ADB=∠CAD+∠CBD+∠C.方法二:如圖3,連接CD并延長至F,∵∠1和∠3分別是△ACD和△BCD的一個外角,......大家在探究的過程中,還發(fā)現(xiàn)有很多方法可以證明這一結(jié)論,你有自己的方法嗎?任務(wù):(1)填空:“方法一”主要依據(jù)的一個數(shù)學(xué)定理是;(2)探索:根據(jù)“方法二”中輔助線的添加方式,寫出該證明過程的剩余部分;(3)應(yīng)用:如圖4,AE是∠CAD的平分線,BF是∠CBD的平分線,AE與BF交于G,若∠ADB=150°,∠AGB=110°,請你直接寫出∠C的大?。?、如圖,在△ABC中,∠A=∠DBC=36°,∠C=72°.求∠1,∠2的度數(shù).4、如圖,在△ABC中,D為AB邊上一點(diǎn),E為BC邊上一點(diǎn),∠BCD=∠BDC(1)若∠ACD=15°,∠CAD=40°,則∠B=度(直接寫出答案);(2)請說明:∠EAB+∠AEB=2∠BDC的理由.5、如圖,點(diǎn)A在MN上,點(diǎn)B在PQ上,連接AB,過點(diǎn)A作交PQ于點(diǎn)C,過點(diǎn)B作BD平分∠ABC交AC于點(diǎn)D,且.(1)求證:;(2)若,求∠ADB的度數(shù).6、如圖,在中,.(1)如圖①所示,直線過點(diǎn),于點(diǎn),于點(diǎn),且.求證:.(2)如圖②所示,直線過點(diǎn),交于點(diǎn),交于點(diǎn),且,則是否成立?請說明理由.7、完成下列推理過程:已知:如圖,∠1+∠2=180°,∠3=∠B求證:∠EDG+∠DGC=180°證明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°()∴∠2=()∴EF∥AB()∴∠3=()又∵∠3=∠B(已知)∴∠B=∠ADE()∴DE∥BC()∴∠EDG+∠DGC=180°()-參考答案-一、單選題1、C【解析】【分析】在中,利用三角形內(nèi)角和為求,再利用平分,求出的度數(shù),再在利用三角形內(nèi)角和定理即可求出的度數(shù).【詳解】∵在中,,.∴.∵平分.∴.∴.故選C.【考點(diǎn)】本題考查了三角形的內(nèi)角和和角平分線的性質(zhì),熟練應(yīng)用性質(zhì)是解決問題的關(guān)鍵.2、C【解析】【分析】根據(jù)平行線的判定定理求解,即可求得答案.【詳解】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的條件是①③④.故選:C.【考點(diǎn)】本題考查平行線的判定定理:1.同旁內(nèi)角互補(bǔ),兩直線平行;2.同位角相等,兩直線平行;3.內(nèi)錯角相等,兩直線平行.3、C【解析】【分析】依據(jù)內(nèi)錯角相等,兩直線平行;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補(bǔ);同位角相等,兩直線平行進(jìn)行判斷即可.【詳解】解:.,(內(nèi)錯角相等,兩直線平行),正確;.,(兩直線平行,同旁內(nèi)角互補(bǔ)),正確;.,(兩直線平行,同旁內(nèi)角互補(bǔ)),故選項(xiàng)錯誤;.,(同位角相等,兩直線平行),正確;故選:C.【考點(diǎn)】本題主要考查了平行線的性質(zhì)與判定,平行線的判定是由角的數(shù)量關(guān)系判斷兩直線的位置關(guān)系,平行線的性質(zhì)是由平行關(guān)系來尋找角的數(shù)量關(guān)系.4、B【解析】【分析】因?yàn)椤螦﹣∠B=90°,即∠A=90°+∠B,那么∠A一定大于90°,即為鈍角三角形.【詳解】解:在△ABC中,∵∠A﹣∠B=90°,∴∠A=90°+∠B>90°(∠B肯定大于0o),那么△ABC是鈍角三角形.故選:B.【考點(diǎn)】此題考查了三角形內(nèi)角和定理,解題的關(guān)鍵是得到∠A一定大于90°.5、A【解析】【分析】根據(jù)平行線的判定定理:同位角相等兩直線平行,內(nèi)錯角相等兩直線平行,同旁內(nèi)角互補(bǔ)兩直線平行,逐項(xiàng)進(jìn)行判斷,即可求解.【詳解】解:∵∠A=∠CBE,∴ADBC.故選:A.【考點(diǎn)】本題考查了平行線的判定,解題的關(guān)鍵是掌握平行線的判定方法.6、C【解析】【分析】根據(jù)對頂角相等和三角形的內(nèi)角和定理即可得結(jié)論.【詳解】解:∵∠3=∠CEF,∠4=∠CFE∴∠CEF+∠CFE+∠C=∠3+∠4+∠C=180°又∵∠1+∠2+∠C=180°∴故選:C【考點(diǎn)】本題主要考查對頂角的性質(zhì)和三角形的內(nèi)角和定理,掌握對頂角的性質(zhì)和三角形的內(nèi)角和定理是解題的關(guān)鍵.7、C【解析】【分析】利用鄰補(bǔ)角的概念、等量代換及平行線的判定求解可得.【詳解】證明:延長交于點(diǎn),則.又,得.故(內(nèi)錯角相等,兩直線平行).所以※代表,◎代表,▲代表,代表內(nèi)錯角,故選:.【考點(diǎn)】本題主要考查平行線的判定,解題的關(guān)鍵是掌握鄰補(bǔ)角的概念、等量代換及平行線的判定.8、D【解析】【分析】根據(jù)三角形的內(nèi)角和是,即可求解.【詳解】,,在中,,,在中,,,故選:D.【考點(diǎn)】本題考查了垂直的性質(zhì)和三角形的內(nèi)角和,熟練掌握相關(guān)的性質(zhì)是解題的關(guān)鍵.二、填空題1、126°【解析】【分析】利用平行線的性質(zhì)求出∠DEN=27°,再利用翻折不變性得到∠AED=∠DEN=27°,再根據(jù)平角的性質(zhì)即可解決問題.【詳解】解:∵DE∥BC,∴∠DEN=∠A′NM=27°,由翻折不變性可知:∠AED=∠DEN=27°,∴∠NEC=180°﹣2×27°=126°,故答案為126°.【考點(diǎn)】本題考查翻折變換,平行線的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.2、【解析】【分析】由∠P1CD=∠P1+∠P1BC,∠ACD=∠ABC+∠A,而P1B、P1C分別平分∠ABC和∠ACD,得到∠ACD=2∠P1CD,∠ABC=2∠P1BC,于是有∠A=2∠P1,同理可得∠P1=2∠P2,即∠A=22∠P2,因此找出規(guī)律.【詳解】∵P1B、P1C分別平分∠ABC和∠ACD,∴∠ACD=2∠P1CD,∠ABC=2∠P1BC,而∠P1CD=∠P1+∠P1BC,∠ACD=∠ABC+∠A,∴∠A=2∠P1,∴∠P1=∠A,同理可得∠P1=2∠P2,即∠A=22∠P2,∴∠A=2n∠Pn,∴∠Pn=.故答案為:.【考點(diǎn)】本題考查了三角形的內(nèi)角和定理:三角形的內(nèi)角和為180°.也考查了三角形的外角性質(zhì)以及角平分線性質(zhì),難度適中.3、30°##30度【解析】【分析】由三角形的內(nèi)角和定理可求解∠BAC的度數(shù),結(jié)合角平分線的定義可得∠CAD的度數(shù),利用平行線的性質(zhì)可求解.【詳解】解:∵∠C=75°,∠B=45°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AD平分∠BAC,∴∠CAD∠BAC=30°,∵DE∥AC,∴∠ADE=∠CAD=30°.故答案為30°.【考點(diǎn)】本題主要考查三角形的內(nèi)角和定理,平行線的性質(zhì),角平分線的定義,求解∠CAD的度數(shù).4、這兩條直線不平行【解析】【分析】本題需先根據(jù)已知條件和反證法的特點(diǎn)進(jìn)行證明,即可求出答案.【詳解】證明:已知兩條直線都和第三條直線平行;
假設(shè)這兩條直線不平行,則兩條直線有交點(diǎn),因?yàn)檫^直線外一點(diǎn)有且只有一條直線與已知直線平行因此,兩條直線有交點(diǎn)時(shí),它們不可能同時(shí)與第三條直線平行因此假設(shè)與結(jié)論矛盾.故假設(shè)不成立,即如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.故答案為:這兩條直線不平行.【考點(diǎn)】本題主要考查了反證法,在解題時(shí)要根據(jù)反證法的特點(diǎn)進(jìn)行證明是本題的關(guān)鍵.5、59°##59度【解析】【分析】先利用三角形內(nèi)角和定理求出∠CAB+∠CBA=180°-∠C=118°,從而利用三角形外角的性質(zhì)求出∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,再由角平分線的定義求出,由此求解即可.【詳解】解:∵∠C=62°,∴∠CAB+∠CBA=180°-∠C=118°,∵∠DAB=∠C+∠CBA,∠EBA=∠C+∠CAB,∴∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,∵△ABC兩個外角的角平分線相交于G,∴,,∴,∴∠G=180°-∠GAB-∠GBA=59°,故答案為:59°.【考點(diǎn)】本題主要考查了三角形內(nèi)角和定理,三角形外角的性質(zhì),角平分線的定義,熟知相關(guān)知識是解題的關(guān)鍵.6、76°【解析】【分析】根據(jù)平行線的性質(zhì)和三角形的內(nèi)角和解答即可.【詳解】解:∵∠CEF=∠CHD,∴DH∥GE,∴∠ADH=∠G,∵∠EFC=∠ADH,∵∠BFG=∠EFC,∴∠G=∠BFG,∴∠ABC=∠G+∠BFG=2∠EFC,∵∠CEF:∠EFC=5:2,∠C=47°,∴∠EFC=38°,∴∠ABC=76°,∵DE∥BC,∴∠ADE=∠ABC=76°,故答案為:76°.【考點(diǎn)】本題主要考查了平行線的性質(zhì)和三角形內(nèi)角和定理,準(zhǔn)確計(jì)算是解題的關(guān)鍵.7、105°【解析】【分析】利用直角三角形的兩個銳角互余求得∠ABC與∠FDE的度數(shù),然后在△MDB中,利用三角形內(nèi)角和定理求得∠DMB,再依據(jù)對頂角相等即可求解.【詳解】解:∵∠ABC=90°?∠C=90°?60°=30°,∠FDE=90°?∠F=90°?45°=45°,∴∠DMB=180°?∠ABC?∠FDE=180°?30°?45°=105°,∴∠CMF=∠DMB=105°.故答案為:105°.【考點(diǎn)】本題考查了直角三角形兩銳角互余、三角形的內(nèi)角和定理以及對頂角的性質(zhì),正確求得∠DMB的度數(shù)是關(guān)鍵.三、解答題1、∠AEC的度數(shù)為15.5°.【解析】【分析】根據(jù)角平分線的定義可得∠EAC=∠BAC,∠ECF=∠BCF,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠BCF=∠ABC+∠BAC,∠ECF=∠AEC+∠EAC,然后整理即可得到∠AEC=∠ABC.【詳解】解:∵AE、CE分別是∠BAC和∠BCF的平分線,∴∠EAC=∠BAC,∠ECF=∠BCF,由三角形的外角性質(zhì)得,∠BCF=∠ABC+∠BAC,∠ECF=∠AEC+∠EAC,∴∠AEC+∠EAC=(∠ABC+∠BAC),∴∠AEC=∠ABC,∵∠ABC=31°,∴∠AEC=×31=15.5°.【考點(diǎn)】本題考查了三角形的內(nèi)角和定理,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),角平分線的定義,熟記性質(zhì)與定理并求出∠AEC=∠ABC是解題的關(guān)鍵.2、(1)三角形內(nèi)角和定理(或三角形的內(nèi)角和等于180°);(2)見解析;(3)70°【解析】【分析】(1)根據(jù)三角形內(nèi)角和定理,即可求解;(2)根據(jù)三角形外角的性質(zhì)可得∠1=∠2+∠A,∠3=∠4+∠B,從而得到∠1+∠3=∠2+∠A+∠4+∠B,即可求證;(3)由(2)可得:∠ADB=∠CAD+∠CBD+∠C,∠AGB=∠CAE+∠CBF+∠C,從而得到∠CAE+∠CBF=110°-∠C,∠CAD+∠CBD=150°-∠C,再由AE是∠CAD的平分線,BF是∠CBD的平分線,可得150°-∠C=2(110°-∠C),即可求解.(1)解:三角形內(nèi)角和定理(或三角形的內(nèi)角和等于180°)(2)證明:連接CD并延長至F,∵∠1和∠2分別是△ACD和△BCD的一個外角,∴∠1=∠2+∠A,∠3=∠4+∠B,∴∠1+∠3=∠2+∠A+∠4+∠B,即∠ADB=∠A+∠B+∠ACB;(3)解:由(2)得:∠ADB=∠CAD+∠CBD+∠C,∠AGB=∠CAE+∠CBF+∠C,∵∠ADB=150°,∠AGB=110°,∴∠CAD+∠CBD+∠C=150°,∠CAE+∠CBF+∠C=110°,∴∠CAE+∠CBF=110°-∠C,∠CAD+∠CBD=150°-∠C,∵AE是∠CAD的平分線,BF是∠CBD的平分線,∴∠CAD=2∠CAE,∠CBD=2∠CBF,∴∠CAD+∠CBD=2(∠CAE+∠CBF),∴150°-∠C=2(110°-∠C),解得:∠C=70°.【考點(diǎn)】本題主要考查了三角形的內(nèi)角和定理,三角形外角的性質(zhì),有關(guān)角平分線的計(jì)算,熟練掌握三角形內(nèi)角和定理,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和是解題的關(guān)鍵.3、∠1=36°,∠2=72°.【解析】【分析】在△ABC和△BDC中,根據(jù)三角形內(nèi)角和定理,即可得出結(jié)論.【詳解】在△ABC中,∠ABC=180°﹣∠A﹣∠C=180°-36°-72°=72°,∴∠1=∠ABC﹣∠DBC=72°-36°=36°;在△BCD中,∠2=180°﹣∠DBC﹣∠C=180°-36°-72°=72°.【考點(diǎn)】本題考查了三角形的內(nèi)角和定理,注意掌握數(shù)形結(jié)合思想的應(yīng)用.4、(1)70(2)見解析【解析】【分析】(1)利用三角形的外角性質(zhì)可求出∠BDC的度數(shù),結(jié)合∠BCD=∠BDC可得出∠BCD的度數(shù),再在△BCD中,利用三角形內(nèi)角和定理可求出∠B的度數(shù);(2)在△ABE中,利用三角形內(nèi)角和定理可得出∠EAB+∠AEB=180°﹣∠B,在△BCD中,利用三角形內(nèi)角和定理及∠BCD=∠BDC可得出2∠BDC=180°﹣∠B,進(jìn)而可得出∠EAB+∠AEB=2∠BDC.(1)解:∵∠ACD=15°,∠CAD=40°,∴∠BDC=∠ACD+∠CAD=55°,∴∠BCD=∠BDC=55°.在△BCD中,∠BDC+∠BCD+∠B=180°,∴∠B=180°﹣55°﹣55°=70°.故答案為:70;(2)解:在△ABE中,∠EAB+∠AEB+∠B=180°,∴∠EAB+∠AEB=180°﹣∠B.在△BCD中,∠BDC+∠BCD+∠B=180°,∠BCD=∠BDC,∴2∠BDC=180°﹣∠B,∴∠EAB+∠AEB=2∠BDC.【考點(diǎn)】本題考查了三角形內(nèi)角和定理以及三角形的外角性質(zhì),解題的關(guān)鍵是:(1)利用三角形的外角性質(zhì),求出∠BDC的度數(shù);(2)利用三角形內(nèi)角和定理,找出∠EAB+∠AEB=180°﹣∠B及2∠BDC=180°﹣∠B.5、(1)見解析(2)【解析】【分析】(1)根據(jù),利用三角形內(nèi)角和.根據(jù),得出,根據(jù)平行線判定定理即可得出結(jié)論;(2)根據(jù),得出方程,解方程求出,根據(jù)BD平分,求出,再根據(jù)余角性質(zhì)求解即可.(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職種子生產(chǎn)與經(jīng)營(種子加工技術(shù))試題及答案
- 2025年中職(新能源汽車技術(shù))新能源汽車概論實(shí)務(wù)試題及答案
- 2025年中職商務(wù)助理(公文寫作)試題及答案
- 2025年大學(xué)植物學(xué)(應(yīng)用實(shí)操)試題及答案
- 2025年大學(xué)生物(微生物基礎(chǔ))試題及答案
- 2025年大學(xué)石油煉制生產(chǎn)操作(操作規(guī)范)試題及答案
- 2025年大學(xué)環(huán)境工程(環(huán)境工程施工)試題及答案
- 2025年中職無人機(jī)駕駛(植保)(植保作業(yè)操作)試題及答案
- 養(yǎng)老院老人請假制度
- 養(yǎng)老院老人生活娛樂活動組織人員職業(yè)發(fā)展規(guī)劃制度
- 設(shè)計(jì)質(zhì)量、進(jìn)度、保密等保證措施
- 《電力建設(shè)工程施工安全管理導(dǎo)則》(NB∕T 10096-2018)
- 2024年黑龍江省哈爾濱市中考語文試題
- 《底層邏輯》劉潤
- 幼兒園《企鵝遇險(xiǎn)記》原繪本故事
- 多波多分量地震勘探規(guī)范
- (高清版)TDT 1057-2020 國土調(diào)查數(shù)據(jù)庫標(biāo)準(zhǔn)
- 管道工培訓(xùn)課件
- 2024版未來食品加工技術(shù)趨勢:智能化與自動化培訓(xùn)課件
- 無人機(jī)測繪操控員培訓(xùn)計(jì)劃及大綱
- 動角問題專項(xiàng)訓(xùn)練(30道)
評論
0/150
提交評論