版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列事件是隨機事件的是()A.拋出的籃球會下落B.經(jīng)過有交通信號燈的路口,遇到紅燈C.任意畫一個三角形,其內(nèi)角和是D.400人中有兩人的生日在同一天2、下列判斷正確的是()A.明天太陽從東方升起是隨機事件;B.購買一張彩票中獎是必然事件;C.擲一枚骰子,向上一面的點數(shù)是6是不可能事件;D.任意畫一個三角形,其內(nèi)角和是360°是不可能事件;3、如圖是由5個相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.4、如圖,A,B,C是正方形網(wǎng)格中的三個格點,則是()A.優(yōu)弧 B.劣弧 C.半圓 D.無法判斷5、如圖,PA,PB是⊙O的切線,A,B為切點,PA=4,則PB的長度為()A.3 B.4 C.5 D.66、如圖,四邊形ABCD內(nèi)接于⊙O,若∠ADC=130°,則∠AOC的度數(shù)為()A.25° B.80° C.130° D.100°7、圖2是由圖1經(jīng)過某一種圖形的運動得到的,這種圖形的運動是()A.平移 B.翻折 C.旋轉(zhuǎn) D.以上三種都不對8、如圖,在中,,,,將繞原點O逆時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應點的坐標是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、在一個不透明的盒子里裝有若干個紅球和20個白球,這些球除顏色外其余全部相同,每次從袋子中摸出一球記下顏色后放回,通過多次重復實驗發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在0.6附近,則袋中紅球大約有________個.2、如圖,中,,,,將繞原點O順時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應點的坐標是____________.3、已知如圖,AB=8,AC=4,∠BAC=60°,BC所在圓的圓心是點O,∠BOC=60°,分別在、線段AB和AC上選取點P、E、F,則PE+EF+FP的最小值為____________.4、《九章算術》是我國古代的數(shù)學名著,書中有這樣的一個問題:“今有勾八步,股十五步,問勾中容圓徑幾何?”.其意思是:“如圖,現(xiàn)有直角三角形,勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形所能容納的最大圓的直徑是多少?”答:該直角三角形所能容納的最大圓的直徑是______步.5、在同一平面上,外有一點P到圓上的最大距離是8cm,最小距離為2cm,則的半徑為______cm.6、如圖,在中,,,.繞點B順時針方向旋轉(zhuǎn)45°得到,點A經(jīng)過的路徑為弧,點C經(jīng)過的路徑為弧,則圖中陰影部分的面積為______.(結(jié)果保留)7、在平面直角坐標系中,點,圓C與x軸相切于點A,過A作一條直線與圓交于A,B兩點,AB中點為M,則OM的最大值為______.三、解答題(7小題,每小題0分,共計0分)1、如圖,已知線段,點A在線段上,且,點B為線段上的一個動點.以A為中心順時針旋轉(zhuǎn)點M,以B為中心逆時針旋轉(zhuǎn)點N,旋轉(zhuǎn)角分別為和.若旋轉(zhuǎn)后M、N兩點重合成一點C(即構(gòu)成),設.(1)的周長為_______;(2)若,求x的值.2、如圖1,O為直線DE上一點,過點O在直線DE上方作射線OC,∠EOC=130°.將直角三角板AOB(∠OAB=30°)的直角頂點放在點O處,一條邊OA在射線OD上,另一邊OB在直線DE上方,將直角三角板繞點O按每秒5°的速度逆時針旋轉(zhuǎn)一周,設旋轉(zhuǎn)時間為t秒.(1)如圖2,當t=4時,∠AOC=,∠BOE=,∠BOE﹣∠AOC=;(2)當三角板旋轉(zhuǎn)至邊AB與射線OE相交時(如圖3),試猜想∠AOC與∠BOE的數(shù)量關系,并說明理由;(3)在旋轉(zhuǎn)過程中,是否存在某個時刻,使得射線OA、OC、OD中的某一條射線是另兩條射線所成夾角的角平分線?若存在,請直接寫出t的取值,若不存在,請說明理由.3、綜合與實踐“利用尺規(guī)作圖三等分一個任意角”曾是數(shù)學史上一大難題,之后被數(shù)學家證明是不可能完成的.人們根據(jù)實際需要,發(fā)明了一種簡易操作工具——三分角器.圖1是它的示意圖,其中與半圓的直徑在同一直線上,且的長度與半圓的半徑相等;與垂直于點,足夠長.使用方法如圖2所示,若要把三等分,只需適當放置三分角器,使經(jīng)過的頂點,點落在邊上,半圓與另一邊恰好相切,切點為,則,就把三等分了.為了說明這一方法的正確性,需要對其進行證明.獨立思考:(1)如下給出了不完整的“已知”和“求證”,請補充完整.已知:如圖2,點,,,在同一直線上,,垂足為點,________,切半圓于.求證:________________.探究解決:(2)請完成證明過程.應用實踐:(3)若半圓的直徑為,,求的長度.4、如圖1,圖2,圖3的網(wǎng)格均由邊長為1的小正方形組成,圖1是三國時期吳國的數(shù)學家趙爽所繪制的“弦圖”,它由四個形狀、大小完全相同的直角三角形組成,趙爽利用這個“弦圖”對勾股定理作出了證明,是中國古代數(shù)學的一項重要成就,請根據(jù)下列要求解答問題.(1)圖1中的“弦圖”的四個直角三角形組成的圖形是對稱圖形(填“軸”或“中心”).(2)請將“弦圖”中的四個直角三角形通過你所學過的圖形變換,在圖2,3的方格紙中設計另外兩個不同的圖案,畫圖要求:①每個直角三角形的頂點均在方格紙的格點上,且四個三角形互不重疊,不必涂陰影;②圖2中所設計的圖案(不含方格紙)必須是軸對稱圖形而不是中心對稱圖形;圖3中所設計的圖案(不含方格紙)必須既是軸對稱圖形,又是中心對稱圖形.5、在所給的的正方形網(wǎng)格中,按下列要求操作:(單位正方形的邊長為1)(1)請在第二象限內(nèi)的格點上找一點,使是以為底的等腰三角形,且腰長是無理數(shù),求點的坐標;(2)畫出以點為中心,旋轉(zhuǎn)180°后的,并求的面積.6、隨著信息技術的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻?、便捷.某校?shù)學興趣小組設計了一份調(diào)查問卷,要求每人選且只選一種最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖.請結(jié)合圖中所給的信息解答下列問題:(1)這次活動共調(diào)查了______人,并補充完整條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為______;(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種方式中選一種方式進行支付,請用畫樹狀圖或列表的方法,求出兩人恰好選擇同一種支付方式的概率.7、如圖1,在⊙O中,AC=BD,且AC⊥BD,垂足為點E.(1)求∠ABD的度數(shù);(2)圖2,連接OA,當OA=2,∠OAB=15°,求BE的長度;(3)在(2)的條件下,求的長.-參考答案-一、單選題1、B【分析】根據(jù)事件的確定性和不確定性,以及隨機事件的含義和特征,逐項判斷即可.【詳解】A.拋出的籃球會下落是必然事件,故此選項不符合題意;B.經(jīng)過有交通信號燈的路口,遇到紅燈是隨機事件,故此選項符合題意;C.任意畫一個三角形,其內(nèi)角和是是不可能事件,故此選項不符合題意;D.400人中有兩人的生日在同一天是必然事件,故此選項不符合題意;故選B【點睛】此題主要考查了事件的確定性和不確定性,要熟練掌握,解答此題的關鍵是要明確:事件分為確定事件和不確定事件(隨機事件),確定事件又分為必然事件和不可能事件.2、D【詳解】解:A、明天太陽從東方升起是必然事件,故本選項錯誤,不符合題意;B、購買一張彩票中獎是隨機事件,故本選項錯誤,不符合題意;C、擲一枚骰子,向上一面的點數(shù)是6是隨機事件,故本選項錯誤,不符合題意;D、任意畫一個三角形,其內(nèi)角和是360°是不可能事件,故本選項正確,符合題意;故選:D【點睛】本題考查的是對必然事件的概念的理解,熟練掌握必然事件指在一定條件下一定發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件是解題的關鍵.3、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在左視圖中.【詳解】從左面看,第一層有2個正方形,第二層左側(cè)有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,熟知左視圖是從物體的左面看得到的視圖是解答本題的關鍵.4、B【分析】根據(jù)三點確定一個圓,圓心的確定方法:任意兩點中垂線的交點為圓心即可判斷.【詳解】解;如圖,分別連接AB、AC、BC,取任意兩條線段的中垂線相交,交點就是圓心.故選:B.【點睛】本題考查已知圓上三點求圓心,取任意兩條線段中垂線交點確定圓心是解題關鍵.5、B【分析】由切線的性質(zhì)可推出,.再根據(jù)直角三角形全等的判定條件“HL”,即可證明,即得出.【詳解】∵PA,PB是⊙O的切線,A,B為切點,∴,,∴在和中,,∴,∴.故選:B【點睛】本題考查切線的性質(zhì),三角形全等的判定和性質(zhì).熟練掌握切線的性質(zhì)是解答本題的關鍵.6、D【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠B的度數(shù),根據(jù)圓周角定理計算即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠B+∠ADC=180°,∵∠ADC=130°,∴∠B=50°,由圓周角定理得,∠AOC=2∠B=100°,故選:D.【點睛】本題考查的是圓內(nèi)接四邊形的性質(zhì)和圓周角定理,掌握圓內(nèi)接四邊形的對角互補是解題的關鍵.7、C【詳解】解:根據(jù)圖形可知,這種圖形的運動是旋轉(zhuǎn)而得到的,故選:C.【點睛】本題考查了圖形的旋轉(zhuǎn),熟記圖形的旋轉(zhuǎn)的定義(把一個平面圖形繞平面內(nèi)某一點轉(zhuǎn)動一個角度,叫做圖形的旋轉(zhuǎn))是解題關鍵.8、C【分析】過點A作AC⊥x軸于點C,設,則,根據(jù)勾股定理,可得,從而得到,進而得到∴,可得到點,再根據(jù)旋轉(zhuǎn)的性質(zhì),即可求解.【詳解】解:如圖,過點A作AC⊥x軸于點C,設,則,∵,,∴,∵,,∴,解得:,∴,∴,∴點,∴將繞原點O順時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應點的坐標是,∴將繞原點O逆時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應點的坐標是.故選:C【點睛】本題考查坐標與圖形變化一旋轉(zhuǎn),解直角三角形等知識,解題的關鍵是求出點A的坐標,屬于中考??碱}型.二、填空題1、30【分析】設袋中紅球有x個,根據(jù)題意用紅球數(shù)除以白球和紅球的總數(shù)等于紅球的頻率列出方程即可求出紅球數(shù).【詳解】解:設袋中紅球有x個,根據(jù)題意,得:,解并檢驗得:x=30.所以袋中紅球有30個.故答案為:30.【點睛】本題考查了利用頻率估計概率,解決本題的關鍵是用頻率的集中趨勢來估計概率,這個固定的近似值2、【分析】如圖(見解析),過點作軸于點,點作軸于點,設,從而可得,先利用勾股定理可得,從而可得,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得,然后根據(jù)三角形全等的判定定理證出,最后根據(jù)全等三角形的性質(zhì)可得,由此即可得出答案.【詳解】解:如圖,過點作軸于點,點作軸于點,設,則,在中,,在中,,,解得,,由旋轉(zhuǎn)的性質(zhì)得:,,,,在和中,,,,,故答案為:.【點睛】本題考查了勾股定理、旋轉(zhuǎn)、點坐標等知識點,畫出圖形,通過作輔助線,正確找出兩個全等三角形是解題關鍵.3、12【分析】如圖,連接BC,AO,作點P關于AB的對稱點M,作點P關于AC的對稱點N,連接MN交AB于E,交AC于F,此時△PEF的周長=PE+PF+EF=EM+EF+FM=MN,想辦法求出MN的最小值即可解決問題.【詳解】解:如圖,連接BC,AO,作點P關于AB的對稱點M,作點P關于AC的對稱點N,連接MN交AB于E,交AC于F,此時△PEF的周長=PE+PF+EF=EM+EF+FM=MN,∴當MN的值最小時,△PEF的值最小,∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,∴MN=AM=PA,∴當PA的值最小時,MN的值最小,取AB的中點J,連接CJ.∵AB=8,AC=4,∴AJ=JB=AC=4,∵∠JAC=60°,∴△JAC是等邊三角形,∴JC=JA=JB,∴∠ACB=90°,∴BC=,∵∠BOC=60°,OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=4,∠BCO=60°,∴∠ACH=30°,∵AH⊥OH,AH=AC=2,CH=AH=2,∴OH=6,∴OA==4,∵當點P在直線OA上時,PA的值最小,最小值為-,∴MN的最小值為?(-)=-12.故答案:-12.【點睛】本題考查了圓周角定理,垂徑定理,軸對稱-最短問題等知識,解題的關鍵是學會利用軸對稱解決最短問題,屬于中考填空題中的壓軸題.4、6【分析】依題意,直角三角形性質(zhì),結(jié)合題意能夠容納的最大為內(nèi)切圓,結(jié)合內(nèi)切圓半徑,利用等積法求解即可;【詳解】設直角三角形中能容納最大圓的半徑為:;依據(jù)直角三角形的性質(zhì):可得斜邊長為:依據(jù)直角三角形面積公式:,即為;內(nèi)切圓半徑面積公式:,即為;所以,可得:,所以直徑為:;故填:6;【點睛】本題主要考查直角三角形及其內(nèi)切圓的性質(zhì),重點在理解題意和利用內(nèi)切圓半徑求解面積;5、5或3【分析】分點P在圓內(nèi)或圓外進行討論.【詳解】解:①當點P在圓內(nèi)時,⊙O的直徑長為8+2=10(cm),半徑為5cm;②當點P在圓外時,⊙O的直徑長為8-2=6(cm),半徑為3cm;綜上所述:⊙O的半徑長為5cm或3cm.故答案為:5或3.【點睛】本題考查了點與圓的位置關系:點的位置可以確定該點到圓心距離與半徑的關系,反過來已知點到圓心距離與半徑的關系可以確定該點與圓的位置關系.6、##【分析】設與AC相交于點D,過點D作,垂足為點E,根據(jù)勾股定理逆定理可得為直角三角形,根據(jù)三邊關系可得,根據(jù)題意及等角對等邊得出,在中,利用正弦函數(shù)可得,結(jié)合圖形,利用扇形面積公式及三角形面積公式求解即可得.【詳解】解:設與AC相交于點D,過點D作,垂足為點E,∵,,,∴,∴為直角三角形,∴,∵繞點B順時針方向旋轉(zhuǎn)45°得到,∴,∴,∴,在中,,∴,∴,∴,,,,,故答案為:.【點睛】題目主要考查勾股定理逆定理,旋轉(zhuǎn)的性質(zhì),等角對等邊的性質(zhì),正切函數(shù),扇形面積等,理解題意,結(jié)合圖形,綜合運用這些知識點是解題關鍵.7、##【分析】如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點,先求出A點坐標,從而可證OM是△ABD的中位線,得到,則當BD最小時,OM也最小,即當B運動到時,BD有最小值,由此求解即可.【詳解】解:如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點∵點C的坐標為(2,2),圓C與x軸相切于點A,∴點A的坐標為(2,0),∴OA=OD=2,即O是AD的中點,又∵M是AB的中點,∴OM是△ABD的中位線,∴,∴當BD最小時,OM也最小,∴當B運動到時,BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案為:.【點睛】本題主要考查了坐標與圖形,一點到圓上一點的距離得到最小值,兩點距離公式,三角形中位線定理,把求出OM的最小值轉(zhuǎn)換成求BD的最小值是解題的關鍵.三、解答題1、(1)4(2)【分析】(1)由旋轉(zhuǎn)知:AM=AC=1,BN=BC,將△ABC的周長轉(zhuǎn)化為MN;(2)由α+β=270°,得∠ACB=90°,利用勾股定理列方程即可.(1)解:由旋轉(zhuǎn)知:AM=AC=1,BN=BC=3-x,∴△ABC的周長為:AC+AB+BC=MN=4;故答案為:4;(2)解:∵α+β=270°,∴∠CAB+∠CBA=360°-270°=90°,∴∠ACB=180°-(∠CAB+∠CBA)=180°-90°=90°,∴AC2+BC2=AB2,即12+(3-x)2=x2,解得.【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì),勾股定理等知識,證明∠ACB=90°是解題的關鍵.2、(1)30°,70°,40°;(2)∠AOC-∠BOE=40°,理由見解析;(3)t的取值為5或20或62【分析】(1)先根據(jù)已知求出∠DOC、∠BOC,再求出當t=4時的旋轉(zhuǎn)角的度數(shù),再利用角的和與差求解即可;(2)設旋轉(zhuǎn)角為x,用x表示∠AOC和∠BOE,即可得出結(jié)論;(3)分①OA為∠DOC的平分線;②OC為∠DOA的平分線;③OD為∠COA的平分線三種情況,利用角平分線定義和旋轉(zhuǎn)性質(zhì)求出旋轉(zhuǎn)角即可.(1)解:∵∠EOC=130°,∠AOB=∠BOE=90°,∴∠DOC=180°-130°=50°,∠BOC=130°-90°=40°,當t=4時,旋轉(zhuǎn)角4×5°=20°,∴∠AOC=∠DOC-∠DOA=50°-20°=30°,∠BOE=90°-20°=70°,∠BOE-∠AOC=70°-30°=40°,故答案為:30°,70°,40°;(2)解:∠AOC-∠BOE=40°,理由為:設旋轉(zhuǎn)角為x,當三角板旋轉(zhuǎn)至邊AB與射線OE相交時,∠AOC=x-50°,∠BOE=x-90°,∴∠AOC-∠BOE=(x-50°)-(x-90°)=40°;(3)解:存在,①當OA為∠DOC的平分線時,旋轉(zhuǎn)角5t=∠DOC=25,∴t=5;②當OC為∠DOA的平分線時,旋轉(zhuǎn)角5t=2∠DOC=100,∴t=20;③當OD為∠COA的平分線時,360-5t=∠DOC=50,∴t=62,綜上,滿足條件的t的取值為5或20或62.【點睛】本題考查角平分線的定義、旋轉(zhuǎn)的性質(zhì)、角的運算,熟練掌握旋轉(zhuǎn)性質(zhì),利用分類討論思想求解是解答的關鍵.3、(1),,將三等分;(2)見解析;(3)【分析】(1)根據(jù)題意即可得;(2)先證明與全等,然后根據(jù)全等的性質(zhì)可得,再由圓的切線的性質(zhì)可得,可得三個角相等,即可證明結(jié)論;(3)連,延長與相交于點,由(2)結(jié)論可得,再由切線的性質(zhì),,然后利用勾股定理及線段間的數(shù)量關系可得,最后利用相似三角形的判定和性質(zhì)求解即可得.【詳解】解:(1),,將三等分,故答案為:;,將三等分,(2)證明:在與中,,,.,是的切線.、都是的切線,,,,將三等分.(3)如圖,連,延長與相交于點,由(2),知.是的切線,,,.∵半徑,∴由勾股定理得,在中,,,.∵,,,,即,.【點睛】題目主要考查全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),圓的切線的性質(zhì),勾股定理等,理解題意,結(jié)合圖形綜合運用這些知識點是解題關鍵.4、(1)中心(2)見解析【分析】(1)利用中心對稱圖形的意義得到答案即可;(2)①每個直角三角形的頂點均在方格紙的格點上,且四個三角形不重疊,是軸對稱圖形;②所設計的圖案(不含方格紙)必須是中心對稱圖形或軸對稱圖形.(1)圖1中的“弦圖”的四個直角三角形組成的圖形是中心對稱圖形,故答案為:中心;(2)如圖2是軸對稱圖形而不是中心對稱圖形;圖3既是軸對稱圖形,又是中心對稱圖形.【點睛】本題考查利用旋轉(zhuǎn)或軸對稱設計方案,關鍵是理解旋轉(zhuǎn)和軸對稱的概念,按要求作圖即可.5、(1)圖見解析,點的坐標為(2)圖見解析,4【分析】(1)根據(jù)題意,腰長為無理數(shù)且為以AB為底的等腰三角形,只在第二象限,作圖即可確定點,然后寫出點的坐標即可;(2)現(xiàn)確定旋轉(zhuǎn)后的點,然
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 滅火器使用規(guī)范培訓方案
- 水電站自動化控制系統(tǒng)方案
- 企業(yè)內(nèi)部溝通培訓與實施手冊
- 懸挑層操作平臺安拆方案
- 煙臺文化旅游職業(yè)學院《運動控制系統(tǒng)設計》2023-2024學年第二學期期末試卷
- 四川交通職業(yè)技術學院《“一帶一路”法律服務》2023-2024學年第二學期期末試卷
- 亳州職業(yè)技術學院《中學課程概論》2023-2024學年第二學期期末試卷
- 鄂爾多斯職業(yè)學院《電子工藝實訓》2023-2024學年第二學期期末試卷
- 無錫工藝職業(yè)技術學院《電子綜合設計與制作》2023-2024學年第二學期期末試卷
- 湖北工業(yè)大學《建筑給排水課程設計》2023-2024學年第二學期期末試卷
- 2026四川涼山州雷波縣糧油貿(mào)易總公司面向社會招聘6人備考題庫及答案詳解一套
- 四川省攀枝花市2025-2026學年八年級上學期期末數(shù)學檢測(含答案)
- 勞動人事法律培訓課件
- 2026中國電信四川公用信息產(chǎn)業(yè)有限責任公司社會成熟人才招聘備考題庫參考答案詳解
- 清真生產(chǎn)過程管控制度
- 途虎養(yǎng)車安全培訓課件
- 2025-2026學年人教版(新教材)小學數(shù)學二年級下冊(全冊)教學設計(附教材目錄P161)
- 刷單協(xié)議書合同范本
- 內(nèi)科學總論小兒遺傳代謝病課件
- 2026小紅書平臺營銷通案
- 品牌設計報價方案
評論
0/150
提交評論